Skip to main content

Advertisement

Log in

Some Issues in Quantum Information Theory

  • Theory
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Quantum information theory is a new interdisciplinary research field related to quantum mechanics, computer science, information theory, and applied mathematics. It provides completely new paradigms to do information processing tasks by employing the principles of quantum mechanics. In this review, we first survey some of the significant advances in quantum information theory in the last twenty years. We then focus mainly on two special subjects: discrimination of quantum objects and transformations between entanglements. More specifically, we first discuss discrimination of quantum states and quantum apparatus in both global and local settings. Secondly, we present systematical characterizations and equivalence relations of several interesting entanglement transformation phenomena, namely entanglement catalysis, multiple-copy entanglement transformation, and partial entanglement recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. William K Wootters, W H Zurek. A single quantum cannot be cloned. Nature, 1982, 299: 802–803.

    Article  Google Scholar 

  2. Dennis Dieks. Communication by EPR devices. Physics Letters A, 1982, 92: 271–272.

    Article  Google Scholar 

  3. Richard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21(6/7): 467–488.

    MathSciNet  Google Scholar 

  4. Michael A Nielsen, Isaac L Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

  5. John Preskill. Lecture Notes for Physics 219/Computer Science 219: Quantum Computation, 1997–2004. Available online: http://www.theory.caltech.edu/people/preskill/ph229/

  6. A Yu Kitaev, A H Shen, M N Vyalyi. Classical and Quantum Computation. American Mathematical Society, 2002.

  7. David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. In Proc. the Royal Society of London A, 1985, 400: 97–117.

  8. Alan M Turing. On computable numbers, with an application to the Entscheidungsproblem. In Proc. the London Mathematical Society, 1937, 42: 230–265.

  9. David Deutsch. Quantum computational networks. In Proc. the Royal Society of London A, 1989, 425: 73.

  10. Andrew Chi-Chih Yao. Quantum circuit complexity. In the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, New York, Nov. 1993, pp. 352–360.

  11. Robert Raussendorf, Hans J Briegel. A one-way quantum computer. Physical Review Letters, 2001, 86(22): 5188–5191.

    Article  Google Scholar 

  12. Robert Raussendorf, Daniel E Browne, Hans J Briegel. Measurement-based quantum computation on cluster states. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 68(2): 022312,

    Article  Google Scholar 

  13. Hans J Briegel, Robert Raussendorf. Persistent entanglement in arrays of interacting particles. Physical Review Letters, 2001, 86(5): 910–913.

    Article  Google Scholar 

  14. Walther P, Resch K J, Rudolph T et al. Experimental one-way quantum computing. Nature, 2005, 434: 169–176.

    Article  Google Scholar 

  15. Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Michael Sipser. Quantum computation by adiabatic evolution. Available online: http://arxiv.org/abs/quant-ph/0001106.

  16. Dorit Aharonov, Wim van Dam, Julia Kempe et al. Adiabatic quantum computation is equivalent to standard quantum computation. Available online: http://arxiv.org/abs/quant-ph/0405098.

  17. Peter W Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A (Atomic, Molecular, and Optical Physics), 1995, 52(4): R2493–R2496.

    Article  Google Scholar 

  18. Steane A M. Error correcting codes in quantum theory. Physical Review Letters, 1996, 77(5): 793–797.

    Article  MATH  MathSciNet  Google Scholar 

  19. A R Calderbank, Peter W Shor. Good quantum error-correcting codes exist. Physical Review A (Atomic, Molecular, and Optical Physics), 1996, 54(2): 1098–1105.

    Article  Google Scholar 

  20. Steane A M. Multiple particle interference and quantum error correction. In Proc. the Royal Society of London A, 1996, 452: 2551–2577.

  21. Gottesman D. Stabilizer codes and quantum error correction [Dissertation]. California Institute of Technology, 1997.

  22. David Deutsch, Richard Jozsa. Rapid solution of problems by quantum computation. In Proc. the Royal Society of London A, 1992, 439: 553–558.

  23. Bernstein E, Vazirani U. Quantum complexity theory. In the 25th Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 1993, pp. 11–20.

  24. Daniel R Simon. On the power of quantum computation. In the 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE, New York, 1994, p.116.

  25. Peter W Shor. Algorithms for quantum computation: Discrete log and factoring. In the 35th Annuel Symp. Foundations of Computer Science (FOCS), IEEE Press, 1994, pp. 124–134.

  26. Ronald L Rivest, A Shamir, L Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21(12): 120–126.

    Article  MATH  MathSciNet  Google Scholar 

  27. Grover L K. A fast quantum mechanical algorithm for database search. In the 28th Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 1996, pp. 212–219.

  28. Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 1997, 79(2): 325–328.

    Article  Google Scholar 

  29. Charles H Bennett, Ethan Bernstein, G Brassard, Umesh Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal of Computing, 1997, 26(5): 1510–1523.

    Article  MATH  MathSciNet  Google Scholar 

  30. Michel Boyer, Gilles Brassard, Peter Hoeyer, Alain Tapp. Tight bounds on quantum searching. Fortschritte der Physik, 1998, 4–5(46): 493–505.

    Article  Google Scholar 

  31. Mosca M. Quantum computer algorithms [Dissertation]. University of Oxford, 1999.

  32. Andris Ambainis. Quantum lower bounds by quantum arguments. In the 32nd Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 2000, pp. 636–643.

  33. Gui-Lu Long. Grover algorithm with zero theoretical failure rate. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(2): 022307.

    Article  Google Scholar 

  34. Dorit Aharonov, Andris Ambainis, Julia Kempe, Umesh Vazirani. Quantum walks on graphs. In the 33rd Annual ACM Symposium on Theory of Computing (STOC), ACM Press, 2001, pp. 50–59.

  35. Andris Ambainis. Quantum walk algorithm for element distinctness. In the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Press, New York, 2004, pp. 22–31.

  36. Andris Ambainis. Quantum walks and their algorithmic applications. Available online: http://arxiv.org/abs/quant-ph/0403120.

  37. Chris Lomont. The hidden subgroup problem — Review and open problems. Available online: http://arxiv.org/abs/quant-ph/0411037.

  38. Knill E. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los Alamos National Laboratory, 1996.

  39. Bernhard Ömer. A procedural formalism for quantum computing. Available online: http://tph.tuwien.ac.at/~oemer/qcl.html, 1998.

  40. Sanders J W, Zuliani P. Quantum programming. Mathematics of Program Construction, 2000, 1837: 80–99.

    MATH  Google Scholar 

  41. Bettelli S, Calarco T, Serafini L. Toward an architecture for quantum programming. European Physical Journal D, 2003, 25(2): 181–200.

    Article  Google Scholar 

  42. Selinger P. Towards a quantum programming language. Mathematical Structures in Computer Science, 2004, 14(4): 527–586.

    Article  MATH  MathSciNet  Google Scholar 

  43. Susan Stepney, Samuel L Braunstein, John A Clark et al. Journeys in non-classical computation I: A grand challenge for computing research. International Journal of Parallel, Emergent and Distributed Systems, 2005, 20(1): 5–19.

    MathSciNet  Google Scholar 

  44. Susan Stepney, Samuel L Braunstein, John A Clark et al. Journeys in non-classical computation II: Initial journeys and waypoints. International Journal of Parallel, Emergent and Distributed Systems, 2006, 21(2): 97–125.

    Article  MATH  MathSciNet  Google Scholar 

  45. Claude E Shannon. A mathematical theory of communication. Bell System Technical Journal, 1948, 27: 379–423, 623–656.

  46. Benjamin Schumacher. Quantum coding. Physical Review A (Atomic, Molecular, and Optical Physics), 1995, 51(4): 2738–2747.

    Google Scholar 

  47. Holevo A S. The capacity of the quantum channel with general signal states. IEEE Trans. Information Theory, IEEE Press, 1998, 44(1): 269–273.

    Google Scholar 

  48. Benjamin Schumacher, Michael D Westmoreland. Sending classical information via noisy quantum channels. Physical Review A (Atomic, Molecular, and Optical Physics), 1997, 56(1): 131–138.

    Google Scholar 

  49. Charles H Bennett, Peter W Shor. Quantum information theory. IEEE Trans. Information Theory, IEEE Press, 1998, 44(6): 2724–2742.

  50. Charles H Bennett, G Brassard. Quantum cryptography: Public key distribution and coin tossing. In IEEE Int. Conf. Computers, Systems and Signal Processing, IEEE, New York, Bangalore, India, December 1984, p.175.

  51. Peres A. How to differentiate between non-orthogonal states. Physics Letters A, 1988, 128(1–2): 19.

    Article  MathSciNet  Google Scholar 

  52. Arun Kumar Pati, Samuel L Braunstein. Impossibility of deleting an unknown quantum state. Nature, 2000, 404: 164–165.

    Article  Google Scholar 

  53. Michael A Nielsen, Isaac L Chuang. Programmable quantum gate arrays. Physical Review Letters, 1997, 79(2): 321–324.

    Article  MATH  MathSciNet  Google Scholar 

  54. Gregg Jaeger, Abner Shimony. Optimal distinction between two non-orthogonal quantum states. Physics Letters A, 1995, 197(2): 83–87.

    Article  MATH  MathSciNet  Google Scholar 

  55. Lu-Ming Duan, Guang-Can Guo. Probabilistic cloning and identification of linearly independent quantum states. Physical Review Letters, 1998, 80(22): 4999–5002.

    Article  Google Scholar 

  56. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 1935, 47: 777–780.

    Article  MATH  Google Scholar 

  57. Charles H Bennett, Stephen J Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 1992, 69(20): 2881–2884.

    Article  MATH  MathSciNet  Google Scholar 

  58. Charles H Bennett, Gilles Brassard, Claude Crépeau et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, 70(13): 1895–1899.

    Article  MATH  MathSciNet  Google Scholar 

  59. Bouwmeester D, Pan J-W, Mattle K et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579.

    Article  Google Scholar 

  60. Charles H Bennett, Herbert J Bernstein, Sandu Popescu et al. Concentrating partial entanglement by local operations. Physical Review A (Atomic, Molecular, and Optical Physics), 1996, 53(4): 2046–2052.

    Article  Google Scholar 

  61. Nielsen M A. Conditions for a class of entanglement transformations. Physical Review Letters, 1999, 83(2): 436–439.

    Article  Google Scholar 

  62. Charles H Bennett, Gilles Brassard, Sandu Popescu et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters, 1996, 76(5): 722–725.

    Article  Google Scholar 

  63. Michal Horodecki, Pawel Horodecki, Ryszard Horodecki. Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? Physical Review Letters, 1998, 80(24): 5239–5242.

    Article  MATH  MathSciNet  Google Scholar 

  64. Artur K Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 1991, 67(6): 661–663.

    Article  MATH  MathSciNet  Google Scholar 

  65. Dominic Mayers. Unconditional security in quantum cryptography. Journal of the ACM, 2001, 48(3): 351–406.

    Article  MathSciNet  Google Scholar 

  66. Andris Ambainis, Leonard J Schulman, Amnon Ta-Shma et al. Quantum communication complexity of sampling. In the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, New York, 1998, pp. 342–351.

  67. Jens Eisert, Martin Wilkens, Maciej Lewenstein. Quantum games and quantum strategies. Physical Review Letters, 1999, 83(15): 3077–3080.

    Article  MATH  MathSciNet  Google Scholar 

  68. Jiangfeng Du, Hui Li, Xiaodong Xu et al. Experimental realization of quantum games on a quantum computer. Physical Review Letters, 2002, 88(13): 137902.

    Article  Google Scholar 

  69. Mingsheng Ying. A theory of computation based on quantum logic (I). Theoretical Computer Science, 2005, 344(2–3): 134–207.

    MathSciNet  Google Scholar 

  70. Igor D Ivanovic. How to differentiate between non-orthogonal states. Physics Letters A, 1987, 123(6): 257–259.

    Article  MathSciNet  Google Scholar 

  71. Dennis Dieks. Overlap and distinguishability of quantum states. Physics Letters A, 1988, 126(5-6): 303–306.

    Article  MathSciNet  Google Scholar 

  72. Ban B. Error-free optimum quantum receiver for a binary pure quantum state signal. Physics Letters A, 1996, 213(5-6): 235–238.

    Article  MATH  MathSciNet  Google Scholar 

  73. Chefles A. Unambiguous discrimination between linearly independent quantum states. Physics Letters A, 1998, 239(6): 339–347.

    Article  MATH  MathSciNet  Google Scholar 

  74. Xiaoming Sun, Shengyu Zhang, Yuan Feng et al. Mathematical nature of and a family of lower bounds for the success probability of unambiguous discrimination. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(4): 044306.

    Article  Google Scholar 

  75. Vandenberghe L, Boyd S. Semidefinite programming. Siam Review, 1996, 38(1): 49–95.

    Article  MATH  MathSciNet  Google Scholar 

  76. Anthony Chefles, Stephen M Barnett. Quantum state separation, unambiguous discrimination and exact cloning. Journal of Physics A: Mathematical and General, 1998, 31: 10097.

    Article  MathSciNet  Google Scholar 

  77. Shengyu Zhang, Yuan Feng, Xiaoming Sun et al. Upper bound for the success probability of unambiguous discrimination among quantum states. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 6406(6): 062103.

    Article  Google Scholar 

  78. Yuan Feng, Shengyu Zhang, Runyao Duan et al. Lower bound on inconclusive probability of unambiguous discrimination. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 66(6): 062313.

    Article  Google Scholar 

  79. Charles H Bennett, David P DiVincenzo, Christopher A Fuchs et al. Quantum nonlocality without entanglement. Physical Review A (Atomic, Molecular, and Optical Physics), 1999, 59(2): 1070–1091.

    Article  MathSciNet  Google Scholar 

  80. Jonathan Walgate, Anthony J Short, Lucien Hardy et al. Local distinguishability of multipartite orthogonal quantum states. Physical Review Letters, 2000, 85(23): 4972–4975.

    Article  Google Scholar 

  81. S Virmani, M F Sacchi, Martin B Plenio et al. Optimal local discrimination of two multipartite pure states. Physics Letters A, 2001, 288(2): 62–68.

    Article  MATH  MathSciNet  Google Scholar 

  82. Yi-Xin Chen, Dong Yang. Optimal conclusive discrimination of two nonorthogonal pure product multipartite states through local operations. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(6): 064303.

    Article  MathSciNet  Google Scholar 

  83. Yi-Xin Chen, Dong Yang. Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(2): 022320.

    Article  Google Scholar 

  84. Zhengfeng Ji, Hongen Cao, Mingsheng Ying. Optimal conclusive discrimination of two states can be achieved locally. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 71(3): 032323.

    Article  Google Scholar 

  85. Rudolph T, Spekkens R W, Turner P S. Unambiguous discrimination of mixed states. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 68(1): 010301.

    Article  MathSciNet  Google Scholar 

  86. Raynal P, Lutkenhaus N, van Enk S J. Reduction theorems for optimal unambiguous state discrimination of density matrices. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 68(2): 022308.

    Article  Google Scholar 

  87. Fiurasek J, Jezek M. Optimal discrimination of mixed quantum states involving inconclusive results. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 67(1): 012321.

    Article  MathSciNet  Google Scholar 

  88. Eldar Y C. Mixed-quantum-state detection with inconclusive results. Physical Review A (Atomic, Molecular, and Optical Physics), 2003, 67(4): 042309.

    Article  Google Scholar 

  89. Yuan Feng, Runyao Duan, Mingsheng Ying. Unambiguous discrimination between mixed quantum states. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 70(1): 012308.

    Article  Google Scholar 

  90. Chi Zhang, Yuan Feng, Mingsheng Ying. Unambiguous discrimination of mixed quantum states. Physics Letters A, 2006, 353(4): 300–306.

    Article  Google Scholar 

  91. Chefles A. Condition for unambiguous state discrimination using local operations and classical communication. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 69(5): 050307.

    Article  Google Scholar 

  92. Acin A. Statistical distinguishability between unitary operations. Physical Review Letters, 2001, 8717(17): 177901.

    Article  MathSciNet  Google Scholar 

  93. G M D’Ariano, P Lo Presti, M G A Paris. Using entanglement improves the precision of quantum measurements. Physical Review Letters, 2001, 87(7): 270404.

    Article  Google Scholar 

  94. Runyao Duan, Yuan Feng, Mingsheng Ying. Entanglement is not necessary for perfect discrimination between unitary operations. Available online: http://arxiv.org/abs/quant-ph/0601150, 2006.

  95. Zhengfeng Ji, Yuan Feng, Runyao Duan et al. Identification and distance measures of measurement apparatus. Physical Review Letters, 2006, 96(20): 200401.

    Article  Google Scholar 

  96. Guoming Wang, Mingsheng Ying. Unambiguous discrimination between quantum operations. Physical Review A (Atomic, Molecular, and Optical Physics), 2006, 73(4): 042301.

    Article  Google Scholar 

  97. Vidal G. Entanglement of pure states for a single copy. Physical Review Letters, 1999, 83(5): 1046–1049.

    Article  MathSciNet  Google Scholar 

  98. Jonathan D, Plenio M B. Minimal conditions for local pure-state entanglement manipulation. Physical Review Letters, 1999, 83(7): 1455–1458.

    Article  MathSciNet  Google Scholar 

  99. Jonathan D, Plenio M B. Entanglement-assisted local manipulation of pure quantum states. Physical Review Letters, 1999, 83(17): 3566–3569.

    Article  MATH  MathSciNet  Google Scholar 

  100. Jens Eisert, Martin Wilkens. Catalysis of entanglement manipulation for mixed states. Physical Review Letters, 2000, 85(2): 437–440.

    Article  Google Scholar 

  101. Morikoshi F. Recovery of entanglement lost in entanglement manipulation. Physical Review Letters, 2000, 84(14): 3189–3192.

    Article  Google Scholar 

  102. Vidal G, Jonathan D, Nielsen M A. Approximate transformations and robust manipulation of bipartite pure state entanglement. Physical Review A (Atomic, Molecular, and Optical Physics), 2000, 62(1): 012304.

    Article  Google Scholar 

  103. Zhengwei Zhou, Guangcan Guo. Basic limitations for entanglement catalysis. Physics Letters A, 2000, 277(2): 70–74.

    Article  MathSciNet  Google Scholar 

  104. Lo H-K, Popescu S. Concentrating entanglement by local actions: Beyond mean values. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 63(2): 022301.

    Article  Google Scholar 

  105. Bennett C H, Popescu S, Rohrlich D et al. Exact and asymptotic measures of multipartite pure state entanglement. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 63(1): 012307.

    Google Scholar 

  106. Morikoshi F, Koashi M. Deterministic entanglement concentration. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(2): 022316.

    Article  MathSciNet  Google Scholar 

  107. Bandyopadhyay S, Roychowdhury V, Vatan F. Partial recovery of entanglement in bipartite-entanglement transformations. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 65(4): 040303 (Rapid Communications).

  108. Leung D W, Smolin J A. More is not necessarily easier. Available online: http://arxiv.org/abs/quant-ph/0103158, 2001.

  109. Daftuar S, Klimesh M. Mathematical structure of entanglement catalysis. Physical Review A (Atomic, Molecular, and Optical Physics), 2001, 64(4): 042314.

    Article  MathSciNet  Google Scholar 

  110. Bandyopadhyay S, Roychowdhury V. Efficient entanglement-assisted transformation for bipartite pure states. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(4): 042303.

    MathSciNet  Google Scholar 

  111. Bandyopadhyay S, Roychowdhury V, Sen U. Classification of nonasymptotic bipartite pure-state entanglement transformations. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(5): 052315.

    Google Scholar 

  112. Xunli Feng, Zhongyang Wang, Zhizhan Xu. Mutual catalysis of entanglement transformations for pure entangled states. Physical Review A (Atomic, Molecular, and Optical Physics), 2002, 65(2): 022307.

    Article  Google Scholar 

  113. Yuan Feng, Runyao Duan, Mingsheng Ying. The relation between catalyst-assisted entanglement transformation and multiple-copy transformation. Available online: http://arxiv.org/abs/quant-ph/0312110, 2003.

  114. Zhengfeng Ji, Runyao Duan, Mingsheng Ying. Comparability of multipartite entanglement. Physics Letters A, 2004, 330(3): 418–423.

    Article  MathSciNet  Google Scholar 

  115. Runyao Duan, Yuan Feng, Mingsheng Ying. An equivalence of entanglement-assisted transformation and multiple-copy entanglement transformation. Available online: http://arxiv.org/abs/quant-ph/0404046, 2004.

  116. Yuan Feng, Runyao Duan, Mingsheng Ying. When catalysis is useful for probabilistic entanglement transformation. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 69(6): 062310.

    Article  Google Scholar 

  117. Sumit Kumar Daftuar. Eigenvalue inequalities in quantum information processing [Dissertation]. California Institute of Technology, 2004.

  118. Xiaoming Sun, Runyao Duan, Mingsheng Ying. The existence of quantum entanglement catalysts. IEEE Trans. Information Theory, 2005, 51(1): 75–80.

    Article  Google Scholar 

  119. Runyao Duan, Yuan Feng, Zhengfeng Ji et al. Efficiency of deterministic entanglement transformation. Physical Review A (Atomic, Molecular, and Optical Physics), 2004, 71(2): 022305.

    Article  Google Scholar 

  120. Yuan Feng, Runyao Duan, Mingsheng Ying. Catalyst-assisted probabilistic entanglement transformation. IEEE Transanctions on Information Theory, 2005, 51(3): 1090–1101.

    Article  Google Scholar 

  121. Runyao Duan, Yuan Feng, Xin Li et al. Trade-off between multiple-copy transformation and entanglement catalysis. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 71(6): 062306.

    Article  Google Scholar 

  122. Runyao Duan, Yuan Feng, Xin Li et al. Multiple-copy entanglement transformation and entanglement catalysis. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 71(4): 042319.

    Article  MathSciNet  Google Scholar 

  123. Runyao Duan, Yuan Feng, Mingsheng Ying. Entanglement-assisted transformation is asympotically equivalent to multiple-copy transformation. Physical Review A (Atomic, Molecular, and Optical Physics), 2005, 72(2): 024306.

  124. Runyao Duan, Yuan Feng, Mingsheng Ying. Partial recovery of quantum entanglement. IEEE Trans. Information Theory (accepted, in press), Available online: http://arxiv.org/abs/quant-ph/0404047, 2006.

  125. Marshall A W, Olkin I. Inequalities: Theory of Majorization and Its Applications. Academic Press, New York, 1st Edition, 1979.

    Google Scholar 

  126. Alberti P M, Uhlmann A. Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing. Dordrecht, Boston, 1st Edition, 1982.

  127. Vidal G, Cirac J I. Catalysis in nonlocal quantum operations. Physical Review Letters, 2002, 88(16): 167903.

    Article  Google Scholar 

  128. Bennett C H, Shor P W, Smolin J A et al. Entanglement-assisted classical capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Information Theory, 2002, 48(10): 2637–2655.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Yao Duan.

Additional information

Regular Paper: This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 60503001, 60321002, 60305005, and 60496321), and by Tsinghua Basic Research Foundation (Grant No. 052220204). The first author was partly supported by Tsinghua University (Grant No. 052420003).

Run-Yao Duan received the B.S. degree from the Department of Computer Science and Technology, Tsinghua University, Beijing, China, in 2002. Now he is working towards the Ph.D. degree at the same department. His current research interests include quantum computation and quantum information theory.

Zheng-Feng Ji received B.S. degree from the Department of Computer Science and Technology, Tsinghua University, Beijing, China, in 2002. He is now a Ph.D. candidate at Tsinghua University under supervision of Prof. Mingsheng Ying. Currently, he works in the area of quantum computation and information.

Yuan Feng received the B.S. degree from the Department of Mathematics, Tsinghua University, Beijing, China, in 1999 and the Ph.D. degree in computer science from the Department of Computer Science and Technology, Tsinghua University, in 2004. His current research is focusing on quantum information and quantum computation.

Ming-Sheng Ying graduated from the Department of Mathematics, Fuzhou Teachers College, Jiangxi, China, in 1981. He is currently a Cheung Kong Professor at State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing China. His research interests include formal methods and semantics, logic in computer science and artificial intelligence, quantum information, and fuzzy logic. He has published more than 50 papers on the international referred journals, and he is also the author of the book Topology in Process Calculus: Approximating Correctness and Infinite Evolution of Concurrent Programs (New York: Springer-Verlag, 2001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, RY., Ji, ZF., Feng, Y. et al. Some Issues in Quantum Information Theory. J Comput Sci Technol 21, 776–789 (2006). https://doi.org/10.1007/s11390-006-0776-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-006-0776-3

Keywords