Skip to main content
Log in

Digital Differential Geometry Processing

  • Applications
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

The theory and methods of digital geometry processing has been a hot research area in computer graphics, as geometric models serves as the core data for 3D graphics applications. The purpose of this paper is to introduce some recent advances in digital geometry processing, particularly mesh fairing, surface parameterization and mesh editing, that heavily use differential geometry quantities. Some related concepts from differential geometry, such as normal, curvature, gradient, Laplacian and their counterparts on digital geometry are also reviewed for understanding the strength and weakness of various digital geometry processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorensen W, Cline H. Marching cubes: A high resolution 3D surface construction algorithm. In Proc. SIGGRAPH 87, Anaheim, California, July 27–31, 1987, pp. 163–169.

  2. Kobbelt L, Botsch M, Schwanecke U, Seidel H-P. Feature sensitive surface extraction from volume data. In Proc. SIGGRAPH’01, Los Angeles, California, Aug. 12–17, 2001, pp. 57–66.

  3. Levoy M, Pulli K, Curless B et al. The digital Michelangelo project: 3D scanning of large statues. In Proc. SIGGRAPH 00, New Orleans, Louisiana, July 23–28, 2000, pp. 131–144.

  4. Hoppe H, DeRose T, Duchamp T et al. Surface reconstruction from unorganized points. In Proc. of SIGGRAPH 92, Chicago, Illinois, July 26–31, 1992, pp. 71–78.

  5. Curless B, Levoy M. A volumetric method for building complex models from range images. In Proc. SIGGRAPH 96, New Orleans, Louisiana, August 4–9, 1996, pp. 303–312.

  6. Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. In Proc. SIGGRAPH 98, Orlando, Florida, July 19–24, 1998, pp. 415–422.

  7. Weyrich T, Pauly M, Heinzle S et al. Post-processing of scanned 3D surface data. In Proc. Point-Based Graphics 04, Zurich, Switzerland, June 2–4, 2004, pp. 85–94.

  8. Guskov I, Wood Z J. Topological noise removal. In Proc. Graphics Interface 01, Ottawa, Ontario, Canada, June 7–9, 2001, pp. 19–26.

  9. Taubin G. A signal processing approach to fair surface design. In Proc. SIGGRAPH 95, California, August 6–11, 1995, pp. 351–358.

  10. Desbrun M, Meyer M, Schröder P, Barr A H. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH 99, Los Angeles, California, August 8–13, 1999, pp. 317–324.

  11. Hu G, Peng Q, Forrest A R. Robust mesh smoothing. Journal of Computer Science & Technology, 2004, 19(4): 521–528.

    Article  Google Scholar 

  12. Hu G, Peng Q, Forrest A R. Mean shift de-noising of point-sampled surfaces. The Visual Computer, 2006, 22(3): 147–157.

    Article  Google Scholar 

  13. Xiao C, Miao Y, Liu S, Peng Q. A dynamic balanced flow for filtering point sampled geometry. The Visual Computer, 2006, 22(3): 210–219.

    Article  Google Scholar 

  14. Catmull E, Clark J. Recursively generated b-spline surfaces on arbitrary topological meshes. Computer Aided Design, 1978, 10(6): 350–355.

    Article  Google Scholar 

  15. Doo D, Sabin M. Analysis of the behavior of recursive division surfaces near extraordinary points. Computer Aided Design, 1978, 10(6): 356–360.

    Article  Google Scholar 

  16. Zorin D, Schröder P. Subdivision for modeling and animation. In Course Notes of SIGGRAPH 2000, New Orleans, Louisiana, July 23–28, 2000.

  17. DeRose T, Kass M, Truong T. Subdivision surfaces in character animation. In Proc. SIGGRAPH 98, Orlando, Florida, July 19–24, 1998, pp. 85–94.

  18. Kobbelt L. sqrt(3)-subdivision. In Proc. SIGGRAPH 00, New Orleans, Louisiana, July 23–28, 2000, pp. 103–112.

  19. Zorin D, Schröder P, Sweldens W. Interactive multiresolution mesh editing. In Proc. SIGGRAPH 97, Los Angeles, California, August 3–8, 1997, pp. 259–268.

  20. Hoppe H. Progressive meshes. In Proc. SIGGRAPH 96, 1996, New Orleans, Louisiana, August 4–9, pp. 99–108.

  21. Garland M, Heckbert P S. Surface simplification using quadric error metrics. In Proc. SIGGRAPH 97, Los Angeles, California, August 3–8, 1997, pp. 209–216.

  22. Lindstrom P, Turk G. Fast and memory efficient polygonal simplification. In Proc. IEEE Visualization 98, Research Triangle Park, North Carolina, October 18–23, 1998, pp. 279–286.

  23. Guskov I, Sweldens W, Schröder P. Multiresolution signal processing for meshes. In Proc. SIGGRAPH 99, Los Angeles, California, August 8–13, 1999, pp. 325–334.

  24. Lee A, Sweldens Q, Schröder P et al. MAPS: Multiresolution adaptive parameterization of surfaces. In Proc. SIGGRAPH 98, Orlando, Florida, July 19–24, 1998, pp. 95–104.

  25. Praun E, Sweldens W, Schröder P. Consistent mesh parameterizations. In Proc. SIGGRAPH 01, Los Angeles, California, August 12–17, 2001, pp. 179–184.

  26. Kraevoy V, Sheffer A. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph., 2004, 23(3): 861–869.

    Article  Google Scholar 

  27. Schreiner J, Asirvatham A, Praun E, Hoppe H. Inter-surface mapping. ACM Trans. Graph., 2004, 23(3): 870–877.

    Article  Google Scholar 

  28. Floater M, Hormann K. Surface parameterization: A tutorial and survey. In Proc. Advances in Multiresolution for Geometric Modelling, Dodgson N, Floater M, Sabin M (eds.), Heidelberg: Springer-Verlag, 2005, pp. 157–186.

  29. Alliez P, Gotsman C. Recent advances in compression of 3D meshes. In Proc. Advances in Multiresolution for Geometric Modelling, Dodgson N, Floater M, Sabin M (eds.), Heidelberg: Springer-Verlag, 2005, pp. 3–26.

  30. Biermann H, Kristjansson D, Zorin D. Approximate Boolean operations on free-form solids. In Proc. SIGGRAPH 01, Los Angeles, California, August 12–17, 2001, pp. 185–194.

  31. Funkhouser T A, Kazhdan M M, Shilane P et al. Modeling by example. ACM Trans. Graph., 2004, 23(3): 652–663.

    Article  Google Scholar 

  32. Sederberg T, Parry S. Free-form deformation of solid geometric models. In Proc. SIGGRAPH 86, Dallas, Texas, August 18–22, 1986, pp. 151–160.

  33. Coquillart S. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Proc. SIGGRAPH 90, Dallas, Texas, August 6–10, 1990, pp. 187–196.

  34. Maccracken R, Joy K. Free-form deformations with lattices of arbitrary topology. In Proc. SIGGRAPH 96, New Orleans, Louisiana, August 4–9, 1996, pp. 181–188.

  35. Xu D, Zhang H, Wang Q et al. Poisson shape interpolation. In Proc. ACM Symp. Solid and Physical Modeling 05, Cambridge, Massachusetts, June 13–15, 2005, pp. 267–274.

  36. Kobbelt L, Campagna S, Vorsatz J, Seidel H-P. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH 98, Orlando, Florida, July 19–24, 1998, pp. 105–114.

  37. Yu Y, Zhou K, Xu D et al. Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph., 2004, 23(3): 641–648.

    Article  Google Scholar 

  38. Lipman Y, Sorkine O, Cohen-or D et al. Differential coordinates for interactive mesh editing. In Proc. Shape Modeling International 04, Genova, Italy, June 7–9, 2004, pp. 181–190.

  39. Sorkine O, Lipman Y, Cohen-or D et al. Laplacian surface editing. In Proc. Symposium on Geometry Processing 04, Nice, France, July 8–10, 2004, pp. 179–188.

  40. Zhou K, Huang J, Snyder J et al. Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph., 2005, 24(3): 496–503.

    Article  Google Scholar 

  41. Lipman Y, Sorkine O, Levin D, Cohen-or. Linear rotation-invariant coordinates for meshes. In ACM Trans. Graph., 2005, 24(3): 479–487.

  42. Kobbelt L, Botsch M. A survey of point based techniques in computer graphics. Computers & Graphics, 2004, 28(6): 801–814.

    Article  Google Scholar 

  43. Alexa M, Gross M, Pauly M et al. Point-based computer graphics. In Course Notes of SIGGRAPH 2004, Los Angeles, California, August 8–12, 2004.

  44. Alexa M, Behr J, Cohen-or D et al. Point set surfaces. In Proc. IEEE Visualization 01, San Diego, California, Oct. 22–23, 2001, pp. 21–28.

  45. Levin D. Mesh-independent surface interpolation. In Proc. Geometric Modeling for Scientific Visualization, Brunnett, Hamann and Mueller (eds.), Springer-Verlag, 2003, pp. 37–49.

  46. Amenta N, Kil Y J. Defining point-set surfaces. ACM Trans. Graph., 2004, 23(3): 264–270.

    Article  Google Scholar 

  47. Gouraud H. Continuous shading of curved surfaces. IEEE Transactions on Computers, 1971, 20(6): 623–629.

    MATH  Google Scholar 

  48. Thürmer G, Wüthrich C. Computing vertex normals form polygonal facets. Journal of Graphics Tools, 1998, 1(3): 43–46.

    MATH  Google Scholar 

  49. Max N. Weights for computing vertex normals from facet normals. Journal of Graphics Tools, 1999, 4(2): 1–6.

    Google Scholar 

  50. Meyer M, Desbrun M, Schröder P, Barr A H. Discrete differential geometry operators for triangulated 2-manifolds. In Proc. VisMath 02, Berlin, Germany, May 22–25, 2002, pp. 35–57.

  51. Floater M S. Parameterization and smooth approximation of surface triangulations. Computer-Aided Geometric Design, 1997, 14(3): 231–250.

    Article  MATH  MathSciNet  Google Scholar 

  52. Floater M S. Mean value coordinates. Computer-Aided Geometric Design, 2003, 20(1): 19–27.

    Article  MATH  MathSciNet  Google Scholar 

  53. Karni Z, Gotsman C. Spectral compression of mesh geometry. In Proc. SIGGRAPH 00, New Orleans, Louisiana, July 23–28, 2000, pp. 279–286.

  54. Polthier K, Schmies M. Straightest Geodesics on Polyhedral Surfaces. Mathematical Visualization, Hege H C, Polthier K (eds.), Springer Verlag, 1998, pp. 391–409.

  55. Vollmer J, Mencl R, Muller H. Improved Laplacian smoothing of noisy surface meshes. Computer Graphics Forum, 1999, 18(3): 131–138.

    Article  Google Scholar 

  56. Liu X, Bao H, Shum H-H, Peng Q. A novel volume constrained smoothing method for meshes. Graphical Models, 2002, 64(3-4): 169–182.

    Article  MATH  Google Scholar 

  57. Liu X, Bao H, Peng Q et al. Constrained fairing for meshes. Computer Graphics Forum, 2001, 20(2): 115–123.

    Article  MATH  Google Scholar 

  58. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In Proc. ICCV 98, Bombay, India, January 4–7, 1998, pp. 839–846.

  59. Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. ACM Trans. Graph., 2003, 22(3): 950–953.

    Article  Google Scholar 

  60. Jones T R, Durand F, Desbrun M. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph., 2003, 22(3): 943–949.

    Article  Google Scholar 

  61. Duchamp T, Certain A, DeRose T, Stuetzle W. Hierarchical computation of PL harmonic embeddings. Technical Report, University of Washington, July 1997.

  62. Floater M S. One-to-one piecewise linear mappings over triangulations. Mathematics of Computation, 2003, 72(242): 685–696.

    Article  MATH  MathSciNet  Google Scholar 

  63. Hormann K, Greiner G. MIPS: An efficient global parameterization method. In Proc. Curve and Surface Design 99, Saint-Malo, France, July 1–7, 1999, pp. 153–162.

  64. Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface meshes. Computer Graphics Forum, 2002, 21(3): 209–218.

    Article  Google Scholar 

  65. Levy B, Petitjean S, Ray N et al. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph., 2002, 21(3): 362–371.

    Article  Google Scholar 

  66. Degener P, Meseth J, Klein R. An adaptable surface parameterization method. In Proc. International Meshing Roundtable 03, Santa Fe, New Mexico, Sept. 14–17, 2003, pp. 227–237.

  67. Sander P V, Snyder J, Gortler S J, Hoppe H. Texture mapping progressive meshes. In Proc. SIGGRAPH 01, Los Angeles, California, August 12–17, 2001, pp. 409–416.

  68. Alexa M. Differential coordinates for local mesh morphing and deformation. The Visual Computer, 2003, 19(2): 105–114.

    MATH  Google Scholar 

  69. Përez P, Gangnet M, Blake A. Poisson image editing. ACM Trans. Graph., 2003, 22(3): 313–318.

    Article  Google Scholar 

  70. Fattal R, Lischinski D, Werman M. Gradient domain high dynamic range compression. ACM Trans. Graph., 2002, 21(3): 249–256.

    Article  Google Scholar 

  71. Zayer R, Rossl C, Karni Z, Seidel H-P. Harmonic guidance for surface deformation. Computer Graphics Forum, 2005, 24(3): 601–609.

    Article  Google Scholar 

  72. Sheffer A, Kraevoy V. Pyramid coordinates for morphing and deformation. In Proc. the Second International Symposium on 3DPVT 04, Thessaloniki, Greece, Sept. 6–9, 2004, pp. 68–75.

  73. Huang J, Shi X, Liu X et al. Subspace gradient domain mesh editing. ACM Trans. Graph., 2006, 25(3): 1126–1134.

    Article  Google Scholar 

  74. Au O, Tai C-L, Liu L, Fu H. Dual Laplacian editing for meshes. IEEE Trans. Vis. & Comp. Graph., 2006, 12(3): 386–395.

    Article  Google Scholar 

  75. Shewchuk J R. What is a good linear element? Interpolation, conditioning, and quality measures. In Proc. 11th International Meshing Roundtable, Ithaca, New York, Sept. 15–18, 2002, pp. 115–126.

  76. Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. ACM Trans. Graph., 2005, 24(3): 561–566.

    Article  Google Scholar 

  77. Botsch M, Bommes D, Kobbelt L. Efficient linear system solvers for mesh processing. Lecture Notes in Computer Science, 2005, 3604: 62–83.

  78. Golub G H, Van Loan C F. Matrix Computations. Johns Hopkins University Press, Baltimore, 1989.

    MATH  Google Scholar 

  79. Davis T A. Umfpack version 4.1 user guide. Tech. Rep., University of Florida. TR-03-008, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Guo Liu.

Additional information

Survey: The research work of this paper is supported by the National Natural Science Foundation of China under Grant No. 60021201, the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China under Grant No. 705027, and the National Grand Fundamental Research 973 Program of China under Grant No. 2002CB312101.

Xin-Guo Liu received the B.Sc. and the Ph.D. degrees in applied mathematics from Zhejiang University in 1995 and 2001. He is currently in the State Key Lab of CAD&CG, and is a professor of the Computer Science School in Zhejiang University. Before joining CAD&CG Lab in 2006, he was a researcher of the Internet Graphics Group in Microsoft Research Asia. His main research interests are in geometry processing, appearance modeling, real-time rendering, and deformable objects.

Hu-Jun Bao received his Bachelor’s and Ph.D. degrees in applied mathematics from Zhejiang University in 1987 and 1993. His research interests include modeling and rendering techniques for large scale of virtual environments and their applications. He is currently the director of State Key Laboratory of CAD&CG of Zhejiang University. He is also the principal investigator of the virtual reality project sponsored by Ministry of Science and Technology of China.

Qun-Sheng Peng is a professor of computer graphics in Zhejiang University. His research interests include realistic image synthesis, computer animation, scientific data visualization, virtual reality, bio-molecule modeling. Prof. Peng graduated from Beijing Mechanical College in 1970 and received the Ph.D. degree from the Department of Computing Studies, University of East Anglia in 1983. He is currently in the editorial boards of several international and Chinese journals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XG., Bao, HJ. & Peng, QS. Digital Differential Geometry Processing. J Comput Sci Technol 21, 847–860 (2006). https://doi.org/10.1007/s11390-006-0847-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-006-0847-5

Keywords

Navigation