Skip to main content
Log in

Hybrid Nanoelectronics: Future of Computer Technology

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Nanotechnology may well prove to be the 21st century’s new wave of scientific knowledge that transforms people’s lives. Nanotechnology research activities are booming around the globe. This article reviews the recent progresses made on nanoelectronic research in US and China, and introduces several novel hybrid solutions specifically useful for future computer technology. These exciting new directions will lead to many future inventions, and have a huge impact to research communities and industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson M, Kannangara K, Smith G et al. Nanotechnology: Basic Science and Emerging Technologies. New York: Chapman & Hall/CRC, 2002.

    Google Scholar 

  2. Weste N H E, Harris R. CMOS VLSI Design a Circuit and System Perspective. Addison Wesley Press, 2004.

  3. Carter F L. Molecular Electronic Devices. New York: Marcel Dekker, 1982.

    Google Scholar 

  4. Ramo S, Whinnery J R, Van Duzer T. Fields and Waves in Communication Electronics. New York: Wiley, 1994.

    Google Scholar 

  5. Goser K, Glösekötter P, Dienstuhl J. Nanoelectronics and Nanosystems from Transistors t Molecular and Quantum Device. New York: Springer, 2004,

    Google Scholar 

  6. Sandeep K, Shukla R, Baharl I. Nano, Quantum and Molecular Computing. Norwell: Kluwer Academic Publishers, 2004.

  7. J von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies, Shannon C E, McCarthy J (eds.), Annals of Mathematics Studies, Princeton University Press, 1956, 34: 43–98.

  8. Meindl J D. Beyond Moore’s law: The interconnect era. Computing in Science & Engineering, 2003, 5(1): 20–24.

    Article  Google Scholar 

  9. Schaller R R. Moore’s law: Past, present and future. Spectrum, IEEE, June 1997, 34(6): 52–59.

    Article  Google Scholar 

  10. Semiconductor industries association. The international technology roadmap for semiconductors 2001. http://public.itrs.net.

  11. Cahay M, Bandyopadhyay S. Semiconductor quantum devices. Potentials IEEE, Feb. 1993, 12(1): 18–23.

    Article  Google Scholar 

  12. Chang C Y. The highlights in the nano world. Proc. the IEEE, Nov. 2003, 91(11): 1756–1764.

    Google Scholar 

  13. Alam M, Weir B, Silverman P. The prospect of using thin oxides for silicon nanotransistors gate insulator. In Extended Abstracts of International Workshop on 1–2 (IWGI 2001), Tokyo, Japan, Nov. 2001, pp.30–34.

  14. Goldhaber-Gordon D, Monterelo M S, Love J C et al. Overview of nanoelectronic devices. Proc. the IEEE, Apr. 1997, 85: 521–540.

    Article  Google Scholar 

  15. Krieger Y G. Molecular electronics: Current state and future trends. J. Structural Chem., 1993, 34: 896–904.

    Article  Google Scholar 

  16. Ding L, Mazumder P. Noise-tolerant quantum MOS circuits using resonant tunneling devices. IEEE Trans. Nanotechnology, Mar. 2004, 3(1): 134–146.

    Article  Google Scholar 

  17. J N Schulman, H J De Los Santos, D H Chow. Physics-based RTD current-voltage equation. IEEE Electron Device Letters, May 1996, 17(5): 220–222.

    Article  Google Scholar 

  18. Mazumder P, Kulkarni S, Bhattacharya M et al. Digital circuit applications of resonant tunneling devices. Proc. the IEEE, Apr. 1998, 86(4): 664–686.

    Article  Google Scholar 

  19. Zhang H, Mazumder P, Kyounghoon Y. Resonant tunnelling diode based QMOS edge triggered flip-flop design. In Proc. the 2004 Int. Symp. Circuits and Systems, Vancouver, Canada, May 2004, 3(III–705-8): 23–26.

  20. Quintana J M, Avedillo M J, Pettenghi H. RTD-based compact programmable gates. In Proc. 2004 IEEE Int. Joint Conf. Neural Networks, Budapest, Hungary, July 2004, Vol. 4, 25–29, pp.2637–2640.

  21. Shirakashi J I, Takemura Y. Ferromagnetic ultra-small tunnel junction devices fabricated by scanning probe microscope (SPM) local oxidation. IEEE Trans. Magnetics, July 2004, 40(4): 2640–2642.

    Article  Google Scholar 

  22. Alexandre S, Yusuf L. Robust circuit and system design methodologies for nanometer-scale devices and single-electron transistors. IEEE Trans. Very Large Scale Integration System, Nov. 2004, 12(11): 1156–1166.

    Google Scholar 

  23. Tang X H, Baie X, Bayat V et al. An SO1 single-electron transistor. In Proc. 1999 IEEE Int. SO1 Conference, California, USA, Oct. 1999, pp.46–47.

  24. Inokawa H, Fujiwara A, Takahashi Y. A merged single-electron transistor and metal-oxide-semiconductor transistor logic for interface and multiple-valued functions. Jpn. J. Appl. Phys., 2002, 41: 2566–2568.

    Article  Google Scholar 

  25. Mahapatra S, Vaish V, Wasshuber C et al. Analytical modeling of single electron transistor for hybrid CMOS-SET analog IC design. IEEE Trans. Electron Device, Nov. 2004, 51(11): 1772–1783.

    Article  Google Scholar 

  26. Chen Y, Ohlberg D A A, Li X et al. Nanoscale molecular-switch devices fabricated by imprint lithography. Applied Physics Letters, 2003, 82: 1610–1612.

    Article  Google Scholar 

  27. Declercq M J, Mahapatra S, Banerjee K et al. Few electron devices: Towards hybrid CMOS-SET integrated circuits Ionescu. In Proc. 39th Design Automation Conference 2002, California, USA, June 2002 10–14, pp.88–93.

  28. Lee B H, Jeong Y H. A novel SET/MOSFET hybrid static memory cell design. IEEE Trans. Nanotechnology, Sept. 2004, 3(3): 377–382.

    Article  Google Scholar 

  29. Pallav G, Niraj K. An algorithm for nanopipelining of RTD-based circuits and architectures. IEEE Trans. Nanotechnology, Mar. 2005, 4(2): 159.

    Article  Google Scholar 

  30. Mathews R H, Sage J P, Sollner T et al. A new RTD-FET logic family. Proc. the IEEE, Apr. 1999, 87(4): 596–605.

    Article  Google Scholar 

  31. Park K S, Kim S J, Baek I B et al. SOI single-electron transistor with low RC delay for logic cells and SET/FET hybrid ICs. IEEE Trans. Nanotechnology, 2005, 4(2): 242–248.

    Article  Google Scholar 

  32. Iijima S, Ajayan P M. Smallest carbon nanotube. Nature, 1992, 358: 23–23.

    Google Scholar 

  33. Hoenlein W, Kreupl F, Duesberg G S et al. Carbon nanotube applications in microelectronic. IEEE Trans. Components and Packaging Technologies, Dec. 2004, 27(4): 629–634.

    Article  Google Scholar 

  34. Srivastava N, Banerjee K. A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies. In Proc. the 21st Int. VLSI Multilevel Interconnect Conference (VMIC), Hawaii, USA, Sept. 29–Oct. 2, 2004, pp.393–398.

  35. Raychowdhury A, Roy K. Carbon nanotubes as interconnects of the future: A circuit perspective. In Proc. the Advanced Metallization Conference, Berkeley, CA, USA, Oct. 2004, pp.277–283.

  36. Burke P J. Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechology, Sept. 2002, 1(3): 129–144.

    Article  MathSciNet  Google Scholar 

  37. Raychowdhury A, Roy K. A circuit model for carbon nanotube interconnects: Comparative study with Cu interconnects for scaled technologies. In Proc. ICCAD-2004, California, USA, Nov. 2004, pp.237–240.

  38. Tarkiainen R, Ahlskog M, Pentillä J et al. Multiwalled carbon nanotube: Lüttinger versus Fermi liquid. Phys. Rev. B, Condens. Matter, Oct. 2001, 64: 195 412-1–195 412-4.

    Google Scholar 

  39. Wind S, Appenzeller J, Martel R et al. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Apply. Phys. Lett, 2002, 80: 3817–3819.

    Article  Google Scholar 

  40. McEuen P L, Fuhrer M S, Park H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnology, Jan. 2002, 1: 78–85.

    Article  Google Scholar 

  41. Wind S J, Appenzeller J, Martel R et al. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett., 2002, 80: 3817–3819.

    Article  Google Scholar 

  42. Raychowdhury A, Roy K. Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnology, Mar. 2005, 4(2): 168–179.

    Article  Google Scholar 

  43. Naeemi A, Sarvari R, Meindl J D. Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Letter, Feb. 2005, 26(2): 84–86.

    Article  Google Scholar 

  44. Bachtold A et al. Suppression of tunneling into mutliwall carbon nanotubes. Phys. Rev. Lett., Oct. 2001, 87: 166801/1–166801/4.

    Google Scholar 

  45. Guo J, Datta S, Lundstrom M. A numerical study of scaling issues for Schottky-Barrier carbon nanotube transistors, IEEE Trans. Electron Devices, Feb. 2004, 51(2): 172–177.

    Article  Google Scholar 

  46. Bohr M T. Nanotechnology goals and challenges for electronic applications. IEEE Trans. Nanotechnology, Mar. 2002, 1(1): 56–62.

    Article  Google Scholar 

  47. Wu Y, Xiang J, Yang C et al. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430: 61–65.

    Article  Google Scholar 

  48. Butts M, Dehon A, Goldstein S C. Molecular electronics: Devices, systems and tools for gigagate, gigabit chips. In Proc. the Int. Conf. Computer-Aided Design, ICCAD’02, San Jose, USA, 2002, pp.433–440.

  49. DeHon A. Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 2005, 1: 109–162.

    Article  Google Scholar 

  50. Wang W, Ari A, Wong W. Exploring NiSi nanowire as on-chip interconnect. In Proc. Nanonet Conference, Lausanne, Switzerland, Sept. 2006, pp.45–52.

  51. Davis J, Meindl J D. Interconnect Technology and Design for Gigascale Integration. Kluwer Academic Publisher, 2003.

  52. Steinhögl W, Schindler G, Steinlesberger G et al. Size-dependent resistivity of metallic wires in the mesoscopic range. Physical Review B, 2002, 66:075414.

    Article  Google Scholar 

  53. Srivastava N, Banerjee K. Performance analysis of carbon nanotube interconnects for VLSI applications. In Proc. ICCAD 2005, California, USA, 2005.

  54. 2005 International technology roadmap for semiconductors. http://public.itrs.net.

  55. http://www.nd.edu/∼qcahome.

  56. Amlani I, Orlov A O, Toth G et al. Digital logic gate using quantum-dot cellular automat. Science, 284(5412): 289–291.

  57. Townsend W J, Abraham J A. Complex gate implementations for quantum dot cellular automata. In Proc. 4th IEEE Conf. Nanotechnology, Munich, Germany, Aug. 2004, pp.625–627.

  58. Ottavi M, Vankamamidi V, Lombardi F et al. Design of a QCA memory with parallel read/serial write. In Proc. IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, May 2005, pp.292–294.

  59. Zhang R, Walus K, Wang W et al. A method of majority logic reduction for quantum cellular automata. In IEEE Trans. Nanotechnology, Dec. 2004, 3(4): 443–450.

  60. Henderson S C, Johnson E W, Janulis J R et al. Incorporating standard CMOS design Process methodologies into the QCA logic design process. IEEE Trans. Nanotechnology, Mar. 2004, 3(1): 2–9.

    Article  Google Scholar 

  61. Lent C S, Timler J, Tougaw P D. Quantum-Dot Cellular Automata. Nanoelectronic Devices, Cambridge, MA: MIT Press, 2001.

    Google Scholar 

  62. Firjany A, Toomarian N K. Modarres of Caltech for NASA’s Jet Propulsion Laboratory; For further information, access the Technical Support Package (TSP); www.nasatech.com/tsp.

  63. Wood A. Data integrity concepts, features, and technology. White paper, Tandem Division, Compaq Computer Corporation.

  64. Chen Y, Jung G-Y, Ohlberg D A A et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology, 2003, 14: 462–468.

    Article  Google Scholar 

  65. DeHon A. Array-based architecture for FET-based, nanoscale electronics. IEEE Trans. Nanotechnology, 2003, 2: 23–32.

    Article  Google Scholar 

  66. Snider G, Kuekes P, Williams R S. CMOS-like logic in defective nanoscale crossbars. Nanotechnology, 2004, 15: 881–891.

    Article  Google Scholar 

  67. Likharev K K, Strukov D B. CMOL: Devices, Circuits, and Architectures. Introducing Molecular Electronics, Cuniberti G F G, Richter K (eds.), Springer, 2005.

  68. Strukov D B, Likharev K K. CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology, 2005, 16: 888–900.

    Article  Google Scholar 

  69. Strukov D B, Likharev K K. A reconfigurable architecture for hybrid CMOS/Nanodevice circuits. In Proc. the Int. Symp. Field Programmable Gate Arrays, Monterey, USA, 2006.

  70. Lyons R E, Vanderkul W. The use of triple-modular redundancy to improve computer reliability. IBM Journal Apr. 1962, pp.200–210.

  71. Nikolic K, Sadek A, Forshaw M. Architectures for reliable computing with unreliable nanodevices. In Proc. the 2001 1st IEEE Conf. Nanotechnology, San Francisco, USA, Oct. 2001, pp.254–259.

  72. Forshaw M, Nikolic K. EC ANSWERS. Project (MELARI 28667) third year report, http://ipga.phys.ucl.ca.uk/research/answers.

  73. Nikolic K, Sadek A, Forshaw M. Fault-tolerant techniques for nanocomputers. Nanotechnology, 2002, 13: 357–362.

    Article  Google Scholar 

  74. Jie H, Jonker P. A system architecture solution for unreliable nanoelectronic devices. IEEE Trans. Nanotechnology, Dec. 2002, 1(4): 201–208.

    Article  Google Scholar 

  75. J von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreliable components. In Automata Studies, Shannon C E, McCarthy J (eds.), Princeton, NJ: Princeton Univ. Press, 1956, pp.43–98.

  76. Evans W, Pippenger N. On the maximum tolerable noise for reliable computation by formulas. IEEE Trans. Inform. Theory, 1998, 44: 1299–1305.

    Article  MathSciNet  Google Scholar 

  77. Norman G, Parker D, Kwiatkowska M, Shukla S. Evaluating the reliability of defect-tolerant architectures for nanotechnology with probabilistic model checking. In Proc. the 17th Int. Conf. VLSI Design, IEEE Computer Society, Mumbai, India, Jan. 2004, pp.907–912.

  78. Tahoori M B, Momenzadeh M, Huang J, Lombardi F. Defects and faults in quantum cellular automata at nanoscale. In Proc. 22nd VLSI Test Symposium, CA, USA, 2004, pp.291–297.

  79. Tahoori M B, Huang J, Momenzadeh M, Lombardi F. Testing of quantum cellular automata. IEEE Trans. Nanotechnology, Dec. 2004, 3(4): 432–442.

    Article  Google Scholar 

  80. Firjany A, Toomarian B N. New design for quantum dots cellular automata to obtain fault tolerant logic gates. Journal of Nanoparticle Research, 2003, 3: 27–37.

    Article  Google Scholar 

  81. Nanomos. http://nanohub.purdue.edu/NanoHub/tools/info/nanomos.php, 2004.

  82. Bhaduri D, Shukla S. Nanolab: A tool for evaluating reliability of defect-tolerant nano architectures. IEEE Trans. Nanotechnology, July 2005, 5: 381–394.

    Google Scholar 

  83. Bahar R I, Mundy J, Chen J. A probability-based design methodology for nanoscale computation. In Proc. ICCAD, IEEE Press, California, USA, 2003, pp.480–486.

  84. Debayan B, Sandeep S. Tools and techniques for evaluating reliability of defect-tolerant nano architectures. In Proc. IEEE Int. Conf. Neural Networks, Budapest, Hungary, 2004, pp.2641–2646.

  85. Armstrong C D, Humphreys W M. The development of design tools for fault tolerant quantum dot cellular automata based logic. In Proc. the 11th NASA VLSI Design Symposium (Coeur d’ Alene, Idaho), NASA, USA, May 2003.

  86. http://www.nanohub.org/.

  87. Walus K, Dysart T J, Jullien G A, Budiman R A. QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnology, Mar. 2004, 3(1): 26–31.

    Article  Google Scholar 

  88. Narayanan A. Quantum computing for beginners. In Proc. the 1999 Congress on Evolutionary Computation, USA, July 1999, 3: 6–9.

  89. Collins C E, Steenson D P, Chamberlain J M et al. How useful will the resonant tunnelling device really be for applications at terahertz frequency? IEE Colloquium on Terahertz Technology and Its Applications, Apr. 1997, pp.6/1–6/6.

  90. Derk M D, DeBrunner L S. Dynamic reconfiguration for fault tolerance for critical, real-time processor arrays signals. In 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Systems and Computers, Asilomar, USA, Nov. 1994, 2: 1058–1062.

  91. Wei T, Wu K, Karri R et al. Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. Asia and South Pacific Design Automation Conference (ASP-DAC 2005), Shanghai, China, Jan. 18–21, 2005, pp.1192–1195.

  92. Tahoori M B, Huang J, Momenzadeh M et al. Defect and fault characterization in quantum cellular automata. In Proc. NanoTech Conference, Boston, USA, 2004, pp.190–193.

  93. Huang J, Momenzadeh M, Tahoori M B et al. Defect characterization for scaling of QCA devices. In Proc. the 19th IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT’04), Cannes, France, 2004, pp.30–38.

  94. Aggarwal A O, Raj P M, Abothu I R et al. New paradigm in IC package interconnections by reworkable nano-interconnects. In Proc. Electronic Components and Technology, (ECTC’04), USA, June 2004, 1: 451–460.

  95. Goldstein H. The race to the bottom [consumer nanodevice]. IEEE Spectrum, Mar. 2005, 42(3): 32–39.

    Article  Google Scholar 

  96. Paulson L D. Little chips promise big power. Computers, June 2002, 35(6): 25–25.

    Article  Google Scholar 

  97. Wang D, Lu J G. Spin dependent transport in ferromagnet/superconductor/ferromagnet single electron transistor. Journal of Applied Physics, 2005, 97: 10A708-10A708-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Wei Wang received his Ph.D. degree in 2002 from Concordia University, Montreal, QC, Canada, in electrical and computer engineering. From 2000 to 2002, he served as an ASIC and FPGA design engineer in EMS technologies, Montreal, QC, Canada. From 2002 to 2004, he was a faculty member in the Department of Electrical and Computer Engineering, the University of Western Ontario, London, ON, Canada. From 2004, he joined the Department of Electrical and Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI). His main research interests are VLSI, nanoelectronics, DSP, cryptography, digital design, ASIC and FPGA design, and computer arithmetic. He has over 60 journal and conference publications in these areas.

Ming Liu is currently a professor and the research director at Institute of Microelectronics of Chinese Academy of Science. Her research interests are in nanoelectronics, microelectronics fabrication and design.

Andrew T. Hsu received the M.S. and Ph.D. degrees at Aerospace Engineering from Georgia Institute of Technology, Atlanta, Georgia in 1986 and 1982 respectively. He is currently a professor of Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis. His research interests are in the areas of computational fluid dynamics, turbulent combustion modeling, reactive flow simulations, turbulence and transition, biomedical fluid mechanics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Liu, M. & Hsu, A. Hybrid Nanoelectronics: Future of Computer Technology. J Comput Sci Technol 21, 871–886 (2006). https://doi.org/10.1007/s11390-006-0871-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-006-0871-5

Keywords

Navigation