Abstract
In general, there are three popular basis representations, standard (canonical, polynomial) basis, normal basis, and dual basis, for representing elements in \({\it GF}(2^{m})\). Various basis representations have their distinct advantages and have their different associated multiplication architectures. In this paper, we will present a unified systolic multiplication architecture, by employing Hankel matrix-vector multiplication, for various basis representations. For various element representation in \({\it GF}(2^{m})\), we will show that various basis multiplications can be performed by Hankel matrix-vector multiplications. A comparison with existing and similar structures has shown that the proposed architectures perform well both in space and time complexities.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Denning D E R. Cryptography and Data Security. Reading, MA: Addison-Wesley, 1983.
Rhee M Y. Cryptography and Secure Communications. Singapore: McGraw-Hill, 1994.
Menezes A, Oorschot P V, Vanstone S. Handbook of Applied Cryptography. Boca Raton, FL: CRC Press, 1997.
Massey J L, Omura J K. Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4.587.627, May 1986.
Itoh T, Tsujii S. Structure of parallel multipliers for a class of fields \({\it GF}(2^{m})\). Information and Computation, 1989, 83: 21–40.
Wu H, Hasan M A. Low complexity bit-parallel multipliers for a class of finite fields. IEEE Trans. Computers, 1998, 47(8): 883–887.
Koc C K, Sunar B. Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. Computers, 1998, 47(3): 353–356.
Hasan M A, Wang M Z, Bhargava V K. A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Computers, 1993, 42(10): 1278–1280.
Sunar B, Koc C K. An efficient optimal normal basis type II multiplier. IEEE Trans. Computers, 2001, 50(1): 83–87.
Yeh C S, Reed S, Truong T K. Systolic multipliers for finite fields \({\it GF}(2^{m})\). IEEE Trans. Computers, 1984, C-33(4): 357–360.
Wang C L, Lin J L. Systolic array implementation of multipliers for finite fields \({\it GF}(2^{m})\). IEEE Trans. Circuits and Systems, 1991, 38(7): 796–800.
Wei S W. A systolic power-sum circuit for \({\it GF}(2^{m})\). IEEE Trans. Computers, 1994, 43(2): 226–229.
Wang C L. Bit-level systolic array for fast exponentiation in \({\it GF}(2^{m})\). IEEE Trans. Computers, 1994, 43(7): 838–841.
Lee C Y. Low-latency bit-parallel systolic multiplier for irreducible x m+x n+1 with gcd(m,n)=1. IEICE Trans. Fundamentals, 2003, E86-A(11): 2844–2852.
Lee C Y, Lu E H, Lee J Y. Bit-parallel systolic multipliers for \({\it GF}(2^{m})\) fields defined by all-one and equally-spaced polynomials. IEEE Trans. Computers, 2001, 50(5): 385–393.
Kwon S. A low complexity and a low latency bit parallel systolic multiplier over \({\it GF} (2^{m})\) using an optimal normal basis of type II. In Proc. 16th IEEE Symp. Computer Arithmetic, Santiago de Compostela, Spain, 2003, 16: 196–202.
Belekamp E R. Bit-serial Reed-Solomon encoders. IEEE Information Theory, 1982, 28: 869–974.
Morii M, Kasahara K, Whiting D L. Efficient bit-serial multiplication and discrete-time Wiener-Hoph equation over finite fields. IEEE Trans. Information Theory, 1989, 35: 1177–1184.
Wang M, Blake I F. Bit serial multiplication in finite fields. SIAM Discrete Math., 1990, 3(1): 140–148.
Wang C C. An algorithm to design finite field multipliers using a self-dual normal basis. IEEE Trans. Computers, 1989, 38(10): 1457–1459.
Wu H, Hasan M A, Blake L F. New low-complexity bit-parallel finite field multipliers using weakly dual bases. IEEE Trans. Computers, 1998, 47(11): 1223–1234.
Fenn S T J, Benaissa M, Taylor D. \({\it GF}(2^{m})\) Multiplication and division over the dual basis. IEEE Trans. Computers, 1996, 45(3): 319–327.
Fenn S T J, Benaissa M, Taylor D. A dual basis systolic multipliers for \({\it GF}(2^{m})\). IEE Proc-Comp. Digit. Tech., 1997, 144(1): 43–46.
Weisstein E W. Hankel Matrix. Mathworld — A wolfram web resource, http://mathworld.com/HankelMatrix.html.
Parhi K. VLSI Signal Processing Systems: Design and Implementation. John Wiley & Sons, 1999.
Seroussi G. Table of low-weight binary irreducible polynomials. Visual Computing Dept., Hewlett Packard Laboratories, Aug. 1998, Available at: http://www.hpl.hp.com/techreports/98/HPL-98-135.html.
Perlis S. Normal bases of cyclic fields of prime power degree. Duke Math. J., 1942, 9: 507–517.
Mullin R C, Onyszchuk I M, Vanstone S A, Wilson R M. Optimal normal bases in \({\it GF}(p^{n})\). Discrete Applied Math., 1988/1989, 22: 149–161.
Brent R P, Zimmermann P. Algorithms for finding almost irreducible and almost primitive trinomials. In Primes and Misdemeeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute Communication FIC/41, The Fields Institute, Toronto, 2004, pp.91–102.
Lee C Y. Low complexity bit-parallel systolic multiplier over \({\it GF}(2^{m})\) using irreducible trinomials. IEE Proc.-Comput. and Digit. Tech., 2003, 150(1): 39–42.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported under Contract No. NSC 94-2218-E-262-003.
Rights and permissions
About this article
Cite this article
Lee, CY., Chen, YH., Chiou, CW. et al. Unified Parallel Systolic Multiplier Over \({\it GF}(2^{m})\) . J Comput Sci Technol 22, 28–38 (2007). https://doi.org/10.1007/s11390-007-9003-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-007-9003-0