Abstract
In this paper, we propose a framework that uses localization for multi-objective optimization to simultaneously guide an evolutionary algorithm in both the decision and objective spaces. The localization is built using a limited number of adaptive spheres (local models) in the decision space. These spheres are usually guided, using some direction information, in the decision space towards the areas with non-dominated solutions. We use a second mechanism to adjust the spheres to specialize on different parts of the Pareto front by using a guided dominance technique in the objective space. Through this interleaved guidance in both spaces, the spheres will be guided towards different parts of the Pareto front while also exploring the decision space efficiently. The experimental results showed good performance for the local models using this dual guidance, in comparison with their original version.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Deb K. Multiobjective Optimization Using Evolutionary Algorithms. John Wiley and Son Ltd., New York, 2001.
Tan K C, Lee T H, Khor E F. Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons. Artificial Intelligence Review, 2002, 17(4): 251–290.
Tan K C, Khor E F, Lee T H. Multiobjective Evolutionary Algorithms and Applications. Springer-Verlag, 2005.
Coello C A C. Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine, 2006, 1(1): 28–36.
Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In Proc. the First International Conference on Genetic Algorithms, Hillsdale, New Jersey, 1985, pp.93–100.
Zitzler E, Laumanns M, Thiele M. SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In Proc. EUROGEN 2001– Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems, Athens, Greece, 2001, pp.95–100.
Abbass H A, Sarker R, Newton C. PDE: A Pareto frontier differential evolution approach for multiobjective optimization problems. In Proc. CEC–2001, Seoul, Korea, vol 2, IEEE Press, 2001, pp.971–978.
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans. Evolutionary Computation, 2002, 6(2): 182–197.
Bui L T, Abbass H A, Essam D. Local models: An approach to distributed multi-objective optimization. Journal of Computational Optimization and Applications, Springer. [In Press, DOI: 10.1007/s10589-007-9119-8], 2007.
Deb K, Zope P, Jain A. Distributed computing of Pareto optimal solutions using multi-objective evolutionary algorithms. Technical Report, No. 2002008, KANGAL, IITK, India, 2002.
Zitzler E, Thiele L, Deb K. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 2000, 8(1): 173–195.
Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Proc. the Fifth International Conference on Genetic Algorithms, San Mateo, California, Morgan Kauffman Publishers, 1993, pp.416–423.
Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization. In Proc. The First IEEE Conference on Evolutionary Computation, Vol.1, IEEE World Congress on Computational Intelligence, Piscataway, New Jersey, 1994, pp.82–87.
Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221–248.
Branke J, Kaufler T, Schmeck H. Guiding multi-objective evolutionary algorithms towards interesting regions. Technical Report No. 399. Technical Report, Institute AIFB, University of Karlsruhe, Germany, 2000.
Deb K, Zope P, Jain A. Distributed computing of Pareto optimal solutions with evolutionary algorithms. In Proc. Evolutionary Multi-Criterion Optimization, LNCS 2632, 2003, pp.535–549.
Branke J, Schmeck H, Deb K, Maheshwar R S. Parallelizing multiobjective evolutionary algorithms: Cone separation. In Proc. the Congress on Evolutionary Computation, Portland, Oregon, USA, IEEE Press, 2004, pp.1952–1957.
Deb K, Sundar J. Reference point based multi-objective optimization using evolutionary algorithms. In Proc. The 8th Annual Conference on Genetic and Evolutionary Computation, GECCO’06, New York, NY, USA, 2006, ACM Press, pp.635–642.
Eberhart R C, Shi Y. Particle swarm optimization: Developments, applications and resources. In Proc. the Congress on Evolutionary Computation, Piscataway, NJ, USA, IEEE Press, 2001, pp.81–86.
KanGal. Kangal laboratory website. http://www.iitk.ac.in/kangal/codes.shtml, 2006.
Veldhuizen D A V. Multiobjective evolutionary algorithms: Classifications, analyses, and new innovation [Dissertation]. Department of Electrical Engineering and Computer Engineering, Airforce Institute of Technology, Ohio, 1999.
Tan K C, Lee T H, Khor E F. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(6): 565–588.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the Australian Research Council (ARC) Centre for Complex Systems under Grant No. CEO0348249 and the Postgraduate Research Student Overseas Grant from UNSW@ADFA, University of New South Wales.
Rights and permissions
About this article
Cite this article
Bui, L.T., Deb, K., Abbass, H.A. et al. Interleaving Guidance in Evolutionary Multi-Objective Optimization. J. Comput. Sci. Technol. 23, 44–63 (2008). https://doi.org/10.1007/s11390-008-9114-2
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-008-9114-2