Skip to main content
Log in

Free-Form Deformation with Rational DMS-Spline Volumes

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD), based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation, control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deformation. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splines. How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dahmen W, Micchelli C A, Seidel H P. Blossoming begets B-spline built better by B-patches. Mathematics of Computation, 1992, 59(199): 97–115.

    Article  MATH  MathSciNet  Google Scholar 

  2. Yan H, Hu S, Martin R. 3D morphing using strain field interpolation. Journal of Computer Science and Technology, 2007, 22(1): 147–155.

    Article  Google Scholar 

  3. Liu X, Bao H, Peng Q. Digital differential geometry processing. Journal of Computer Science and Technology, 2006, 21(5): 847–860.

    Article  MATH  MathSciNet  Google Scholar 

  4. Sederberg T, Parry S. Free-form deformation of solid geometric models. In Proc. ACM SIGGRAPH 1986, Dallas, USA, 1986, pp.151–160.

  5. Bechmann D, Gain J. Point, curve, surface, volume-based spatial deformation. Technique Report, 2005, http://dpt-info.u-strasbg.fr/bechmann/Deformation1.pdf.

  6. Qin H, Terzopoulos D. Triangular NURBS and their dynamic generalizations. Computer Aided Geometric Design, 1997, 14(4): 325–347.

    Article  MATH  MathSciNet  Google Scholar 

  7. Hua J, He Y, Qin H. Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines. In Proc. ACM Symp. Solid Modeling and Application, Nice, France, 2004, pp.47–58.

  8. Feng J, Shao J, Jin X, Peng Q, Forrest A R. Multiresolution free-form deformation with subdivision surface of arbitrary topology. The Visual Computer, 2006, 22(1): 28–42.

    Article  Google Scholar 

  9. Griessmair J, Purgathofer W. Deformation of solids with trivariate B-splines. In Proc. Eurographics 1989, Hamburg, Germany, 1989, pp.137–148.

  10. Kalra P, Mangli A, Thalmann N M, Thalmann D. Simulation of facial muscle actions based on rational freeform deformation. Computer Graphic Forum, 1992, 11(3): 59–69.

    Article  Google Scholar 

  11. Lamousin H, Waggenspack W. NURBS-based freeform deformation. IEEE Computer Graphics and Application, 1994, 14(9): 59–65.

    Article  Google Scholar 

  12. Raviv A, Elber G. Three dimensional freeform sculpting via zero sets of scalar trivariate functions. In Proc. ACM Symp. Solid Modeling and Application, Michigan, USA, 1999, pp.246–257.

  13. Kagan P, Fischer A. Integrated mechanically based CAE system using B-Spline finite elements. Computer Aided Design, 2000, 32(8): 539–552.

    Article  Google Scholar 

  14. Coquillart S. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Proc. ACM SIGGRAPH 1990, Dallas, USA, 1990, pp.187–193.

  15. Coquillart S, Jancene P. Animated free-form deformations: An interactive animation technique. In Proc. ACM SIGGRAPH 1991, Las Vegas, USA, 1991, pp.23–26.

  16. MacCracken R, Joy K. Free-form deformation with lattice of arbitrary topology. In Proc. ACM SIGGRAPH 1996, New Orleans, USA, 1996, pp.181–188.

  17. Bechmann D, Bertrand Y, Thery S. Continuous free form deformation. Comput. Netw. ISDN Syst., 1996, 29(14): 1715–1725.

    Article  Google Scholar 

  18. Moccozet L, Thalmann N M. Dirichlet free-form deformations and their application to hand simulation. In Proc. Computer Animation, Seoul, Korea, 1997, pp.93–102.

  19. Song W, Yang X. Free-form deformation with weighted T-spline. The Visual Computer, 2005, 21(3): 139–151.

    Article  Google Scholar 

  20. Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular meshes. In Proc. ACM SIGGRAPH 2005, Los Angeles, USA, 2005, pp.561–566.

  21. Yoon S H, Kim M S. Sweep-based freeform deformation. Computer Graphics Forum, 2006, 25(3): 487–496.

    Article  MathSciNet  Google Scholar 

  22. Feng J, Ma L, Peng Q. A new free-form deformation through the control of parametric surfaces. Computer and Graphics, 1996, 20(4): 531–539.

    Article  Google Scholar 

  23. Feng J, Peng Q. Accurate B-spline free-form deformation of polygonal objects. Journal of Graphics Tools, 1998, 3(3): 11–27.

    Google Scholar 

  24. Kazuya G, Kobayashi, Katsutoshi O. t-FFD: Freeform deformation by using triangular mesh. In Proc. ACM Symp. Solid Modeling and Application, Washington, USA, 2003, pp.226–234.

  25. Hua J, Qin H. Free form deformations via sketching and manipulating the scalar fields. In Proc. ACM Symp. Solid Modeling and Application, Washington, USA, 2003, pp.328–333.

  26. Lazarus F, Coquillart S, Jancene P. Axial deformations: An intuitive deformation technique. Computer Aided Design, 1994, 26(8): 608–612.

    Article  Google Scholar 

  27. Chang Y, Rockwood P. A generalized de Casteljau approach to 3D free-form deformation. In Proc. ACM SIGGRAPH 1994, Orlando, USA, 1994, pp.257–260.

  28. Singh K, Fiume E. Wires: A geometric deformation technique. In Proc. ACM SIGGRAPH 1998, Orlando, USA, 1998, pp.405–414.

  29. Hsu W, Hughes J, Kaufman H. Direct manipulation on free-form deformation. In Proc. ACM SIGGRAPH 1992, Chicago, USA, 1992, pp.177–184.

  30. Shimin Hu, Hui Zhang, Tai C, Jiaguang Sun. Direct manipulation of FFD: Efficient explicit solutions and decomposable multiple point constraints. The Visual Computer, 2001, 17(6): 370–379.

    MATH  Google Scholar 

  31. Chang T, Lee J H, Kim M S, Hong S J. Direct manipulation of generalized cylinders based on rational motion. The Visual Computer, 1998, 15(5): 228–239.

    Article  Google Scholar 

  32. Aubert F, Bechmann D. Volume preserving space deformation. Computer and Graphics, 1997, 20(5): 625–639.

    Article  Google Scholar 

  33. Wang C, Kai Tang. Developability-preserved free-form deformation of assembled patches. In Proc. ACM Symp. Solid Modeling and Application, Nice, France, 2004, pp.231–236.

  34. Fong P, Seidel H P. An implementation of triangular B-spline surfaces over arbitrary triangulations. Computer Aided Geometric Design, 1993, 10(3/4): 267–275.

    Article  MATH  MathSciNet  Google Scholar 

  35. Greiner G, Seidel H P. Modeling with triangular B-splines. IEEE Computer Graphics and Applications, 1994, 14(2): 56–60.

    Article  Google Scholar 

  36. Pfeifle R, Seidel H P. Faster evaluation of qudartic bivariate DMS spline surfaces. In Proc. Graphics Interface 1994, Alberta, Canada, 1994, pp.182–189.

  37. Franssen M, Veltkamp R C, Wesselink W. Efficient evaluation of triangular B-spline surfaces. Computer Aided Geometric Design, 2000, 17(9): 863–877.

    Article  MATH  MathSciNet  Google Scholar 

  38. He Y, Qin H. Surface reconstruction with triangular B-splines. In Proc. Geometric Modeling and Processing 2004, Beijing, China, 2004, pp.279–291.

  39. He Y, Gu X, Qin H. Rational spherical splines for genus zero shape modeling. In Proc. Shape Modeling and Applications 2005, Cambridge, MA, USA, 2005, pp.82–91.

  40. He Y, Gu X, Qin H. Automatic shape control of triangular B-splines of arbitrary topology. Journal of Computer Science and Technology, 2006, 21(2): 232–237.

    Article  Google Scholar 

  41. Gu X, He Y, Qin H. Manifold splines. In Proc. ACM Symp. Solid and Physical Modeling (SPM 05), Cambridge, Massachusetts, USA, 2005, pp.27–38.

  42. Sander P V, Gu X, Gortler S J, Hoppe H, Snyder J. Silhouette clipping. In Proc. ACM SIGGRAPH 2000, New Orleans, USA, 2000, pp.327–334.

  43. Zhou K, Huang J, Snyder J, Liu X, Bao H, Guo B, Shum H Y. Large mesh deformation using the volumetric graph Laplacian. ACM Transactions on Graphics, 2005, 24(3): 496–503.

    Article  Google Scholar 

  44. Huang J, Shi X, Liu X, Zhou K, Wei L, Teng S, Bao H, Guo B, Shum H Y. Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 2006, 25(3): 1126–1134.

    Article  Google Scholar 

  45. Jorge N, Stephen J W. Numerical Optimization. Berlin, Heidelberg, New York: Springer, 1999.

    MATH  Google Scholar 

  46. Schaefer S, Hakenberg J, Warren J. Smooth subdivision of tetrahedral meshes. In Proc. Eurographics Symp. Geometry Processing (SGP 04), Nice, France, 2004, pp.151–158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Diao Chen.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant Nos. 60773179 and 60473130, and the National Basic Research 973 Program of China under Grant No. 2004CB318000.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 82.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Wang, GZ. & Chen, XD. Free-Form Deformation with Rational DMS-Spline Volumes. J. Comput. Sci. Technol. 23, 862–873 (2008). https://doi.org/10.1007/s11390-008-9182-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-008-9182-3

Keywords

Navigation