Skip to main content

Protein Interactome Analysis for Countering Pathogen Drug Resistance

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Drug-resistant varieties of pathogens are now a recognized global threat. Insights into the routes for drug resistance in these pathogens are critical for developing more effective antibacterial drugs. A systems-level analysis of the genes, proteins, and interactions involved is an important step to gaining such insights. This paper discusses some of the computational challenges that must be surmounted to enable such an analysis; viz., unreliability of bacterial interactome maps, paucity of bacterial interactome maps, and identification of pathways to bacterial drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Antimicrobial Resistance Interagency Task Force 2007 Annual Report. CDC USA. 2008.

  2. Johnson R et al. Drug resistance in mycobacterium tuberculosis. Curr. Issues Mol. Biol., 2006, 8(2): 97–111.

    Google Scholar 

  3. Raman K, Chandra N. Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol., 2008, 8: 234.

    Article  Google Scholar 

  4. Nguyen L, Thompson C J. Foundations of antibiotic resistance in bacteria physiology: The mycobacterial paradigm. Trends Microbiol., 2006, 14(7): 304–312.

    Article  Google Scholar 

  5. Uetz P, Giot L, Cagney G, Mansfield T A et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770): 623–627.

    Article  Google Scholar 

  6. Ito T, Chiba T, Ozawa R, Yoshida M et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 2001, 98(8): 4569–4574.

    Article  Google Scholar 

  7. Li S, Armstrong C M, Bertin N et al. A map of the interactome network of the metazoan C. elegans. Science, 2004, 303(5657): 540–543.

    Article  Google Scholar 

  8. Giot L, Bader J S, Brouwer C, Chaudhuri A et al. A protein interaction map of drosophila melanogaster. Science, 2003, 302(5651): 1727–1736.

    Article  Google Scholar 

  9. Rual J F, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005, 437(7062): 1173–1178.

    Article  Google Scholar 

  10. Stelzl U, Worm U, Lalowski M, Haenig C et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell, 2005, 122(6): 957–968.

    Article  Google Scholar 

  11. Gavin A C, Aloy P, Grandi P, Krause R et al. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084): 631–636.

    Article  Google Scholar 

  12. Krogan N J, Cagney G, Yu H et al. Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature, 2006, 440(7084): 637–643.

    Article  Google Scholar 

  13. Collins S R, Kemmeren P, Zhao X C et al. Towards a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Molecular & Cellular Proteomics, 2007, 6(3): 439–450.

    Article  Google Scholar 

  14. Rain J C, Selig L, De Reuse H et al. The protein-protein interaction map of Helicobacter pylori. Nature, 2001, 409(6817): 211–215.

    Article  Google Scholar 

  15. Parrish J R, Yu J, Liu G, Hines J A et al. A proteome-wide protein interaction map for campylobacter jejuni. Genome Biology, 2007, 8(7): R130.

    Article  Google Scholar 

  16. Su C et al. Bacteriome.org—An integrated protein interaction database for E. coli. Nucleic Acid Res., 2008, 36(Supplement 1): D632–D636.

    Google Scholar 

  17. Hart G T, Ramani A K, Marcotte E M. How complete are current yeast and human protein-interaction networks? Genome Biology, 2006, 7(11): 120.

    Article  Google Scholar 

  18. Bailer S M, Haas J. Connecting viral with cellular interactomes. Current Opinion in Microbiology, 2009, 12(4): 453–459.

    Article  Google Scholar 

  19. Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein-protein interaction data? Journal of Molecular Biology, 2003, 327(5): 919–923.

    Article  Google Scholar 

  20. Xenarios I, Salwinski L, Duan X J, Higney P et al. DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 2002, 30(1): 303–305.

    Article  Google Scholar 

  21. Chua H N, Wong L. Increasing the reliability of protein interactomes. Drug Discovery Today, 2008, 13(15/16): 652–658.

    Article  Google Scholar 

  22. Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 2005, 21(Suppl.1): i302–i310.

    Article  Google Scholar 

  23. Hart G T, Lee I, Marcotte E M. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics, 2007, 8(1): 236.

    Article  Google Scholar 

  24. Ramani A K, Bunescu R C, Mooney R J, Marcotte E M. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biology, 2005, 6(5): R40.

    Article  Google Scholar 

  25. Chua H N, Hugo Willy, Liu G, Li X L, Wong L, Ng S-K. A probabilistic graph-theoretic approach to integrate multiple predictions for the protein-protein subnetwork prediction challenge. Annals of New York Academy of Sciences, 2009, 1158: 224–233.

    Article  Google Scholar 

  26. Liu G, Wong L, Chua H N. Complex discovery from weighted PPI networks. Bioinformatics, 2009, 25(15): 1891–1897.

    Article  Google Scholar 

  27. Schneider A et al. OMA Browser—Exploring orthologous relations across 352 complete genomes. Bioinformatics, 2007, 23(16): 2180–2182.

    Article  Google Scholar 

  28. Roth A et al. Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics, 2008, 9: 518.

    Article  Google Scholar 

  29. Pertea M et al. OperonDB: A comprehensive database of predicted operons in microbial genomes. Nucleic Acid Res., 2009, 37(Database Issue): D479–D482.

    Article  Google Scholar 

  30. Zhang M, Leong H W. Gene team tree: A compact tree representation of all gene teams. In Proc. RECOMB Workshop on Comparative Genomics (RCG), Paris, France, October 13–15, 2008, pp.100–112.

  31. Jiang T. Some algorithmic challenges in genome-wide orthology assignment. Journal of Computer Science and Technology, 2010, 25(1): 42–52.

    Article  Google Scholar 

  32. Li X L et al. Improving domain-based protein interaction prediction using biologically-significant negative dataset. International Journal of Data Mining and Bioinformatics, 2006, 1(2): 138–149.

    Article  Google Scholar 

  33. Li H, Li J, Wong L. Discovering motif pairs at interaction sites from sequences on a proteome-wide scale. Bioinformatics, 2006, 22(8): 989–996.

    Article  Google Scholar 

  34. Mika S, Rost B. Protein-protein interactions more conserved within species than across species. PLoS Comput Biology, 2006, 2(7): 379.

    Google Scholar 

  35. Wu X et al. Prediction of yeast protein-protein interaction network: Insights from the Gene Ontology and annotations. Nucleic Acid Res., 2006, 34(7): 2137–2150.

    Article  Google Scholar 

  36. Juan D, Pazos F, Valencia A. High-confidence prediction of global interactomes based on genome-wide coevolutionary networks. Proc. Natl. Acad. Sci. USA, 2008, 105(3): 934–939.

    Article  Google Scholar 

  37. Liu G, Li J, Wong L. Assessing and predicting protein interactions using both local and global network topological metrics. In Proc. the 19th Int. Conf. Genome Informatics (GIW), Gold Coast, Australia, December 1–3, 2008, pp.138–149.

  38. Enright A J, Van Dongen S, Ouzounis C A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 2002, 30(7): 1575–1584.

    Article  Google Scholar 

  39. Przulj N, Wigle D. Functional topology in a network of protein interactions. Bioinformatics, 2003, 20(3): 340–348.

    Article  Google Scholar 

  40. Altaf-Ul-Amin M et al. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 2006, 7: 207.

    Article  Google Scholar 

  41. Adamcsek B et al. CFinder: Locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021–1023.

    Article  Google Scholar 

  42. Chua H N, Ning K, Sung W-K, Leong H W, Wong L. Using indirect protein-protein interactions for protein complex prediction. Journal of Bioinformatics and Computational Biology, 2008, 6(3): 435–466.

    Article  Google Scholar 

  43. Leung H C M et al. Predicting protein complexes from PPI data: A core-attachment approach. J. Comput. Biol., 2009, 16(2): 133–164.

    Article  MathSciNet  Google Scholar 

  44. Aloy P et al. Structure-based assembly of protein complexes in yeast. Science, 2004, 303(5666): 2026–2029.

    Article  Google Scholar 

  45. Mewes H W et al. MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Res., 2004, 32(Database Issue): D41–D44.

    Article  Google Scholar 

  46. Stark C, Breitkreutz B J, Reguly T, Boucher L et al. BioGRID: A general repository for interaction datasets. Nucleic Acids Research, 2006, 34(Database Issue): D535–D539.

    Article  Google Scholar 

  47. Altman R B. PharmGKB: A logical home for knowledge relating genotype to drug response phenotype. Nature Genet., 2007, 39(4): 426.

    Article  Google Scholar 

  48. Chowdhary R, Zhang J, Liu J S. Bayesian inference of protein-protein interactions from biological literature. Bioinformatics, 2009, 25(12): 1536–1542.

    Article  Google Scholar 

  49. Dai H J, Chang Y C, Tsai R T H et al. New challenges for biological text mining in the next decade. Journal of Computer Science and Technology, 2010, 25(1): 169–inside back cover.

    Article  Google Scholar 

  50. Strong M, Eisenberg D. The protein network as a tool for finding novel drug targets. Progress in Drug Research, 2007, 64: 191–215.

    Article  Google Scholar 

  51. Smith P A, Romesberg F E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nat. Chem. Biol., 2007, 3(9): 549–556.

    Article  Google Scholar 

  52. Valouev A, Johnson D S, Sundquist A, Medina C et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature Methods, 2008, 5(9): 829–834.

    Article  Google Scholar 

  53. Karp R M. Reducibility among combinatorial problems. In Proc. Symp. Complexity of Computer Computations, New York, USA, March 20–22, 1972, pp.85–103.

  54. Leighton T, Rao S. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. JACM, 1999, 46(6): 787–832.

    Article  MATH  MathSciNet  Google Scholar 

  55. Powers D. Graph partitioning by eigenvectors. Lin. Alg. Appl., 1988, 101: 121–133.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limsoon Wong.

Additional information

This work was supported in part by Singapore National Research Foundation under Grant No. NRF-G-CRP-2997-04-082(d).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, L., Liu, G. Protein Interactome Analysis for Countering Pathogen Drug Resistance. J. Comput. Sci. Technol. 25, 124–130 (2010). https://doi.org/10.1007/s11390-010-9310-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9310-8

Keywords