Skip to main content
Log in

MCGIM-Based Model Streaming for Realtime Progressive Rendering

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

While most mesh streaming techniques focus on optimizing the transmission order of the polygon data, few approaches have addressed the streaming problems by using geometry images (GIM). In this paper, we present a new approach which firstly partitions a mesh into several surface patches, then converts these patches into multi-chart geometry images (MCGIM). After resampling the MCGIM and normal map atlas are obtained, we hierarchically construct the regular geometry image representation by adopting the quadtree structure. In this way, the encoded nodes can be transmitted in arbitrary order with high transmission flexibility. Also, the rendering quality of the partially transmitted models can be greatly improved by using the normal texture atlas. Meanwhile only the geometry on the silhouette to the current viewpoint are required to be refined and transmitted, therefore the amount of data is minimized for transferring each frame. In particular, our approach also allows users to encode and transmit the mesh data via JPEG2000 technique. Therefore, our mesh streaming method is suitable for transmitting 3D animation models with use of Motion JPEG2000 videos. Experimental results have demonstrated the effectiveness of our approach, which enables one server to stream the MCGIM texture atlas to the clients. Also, the transmitted model can be rendered in a multiresolution manner by GPU acceleration on the client side, due to the regular geometry structure of MCGIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu X, Gortler S J, Hoppe H. Geometry images. ACM Trans. Graph., 2002, 21(3): 355–361.

    Article  Google Scholar 

  2. Sheng B, Wu E. Progressive streaming of irregular meshes using geometry images. In Proc. Edutainment, Hong Kong, China, Jul. 11-13, 2007, pp. 560–571.

  3. Samet H. The quadtree and related hierarchical data structures. ACM Computing Surveys, 2000, 16(2): 187–260.

    Article  MathSciNet  Google Scholar 

  4. Hoppe H. Progressive meshes. In Proc. SIGGRAPH 1996, New Orleans, USA, Aug. 4-9, 1996, pp. 99–108.

  5. Pajarola R, Rossignac J. Compressed progressive meshes. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(1): 43–49.

    Article  Google Scholar 

  6. Kim J, Lee S, Kobbelt L. View-dependent streaming of progressive Meshes. In Proc. Int. Conf. Shape Modeling and Applications 2004, Genova, Italy, Jun. 7-9, 2004, pp. 209–220.

  7. Abadjev V, del Rosario M, Lebedev A, Migdal A, Paskhaver V. MetaStream. In Proc. VRML 1999, Paderborn, Germany, Feb. 23-26, 1999, pp. 53–62.

  8. Vo H T, Callahan S P. Streaming simplification of tetrahedral meshes. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(1): 145–155.

    Article  Google Scholar 

  9. Guskov I, Vidimce K, Sweldens W, Schröder P. Normal meshes. In Proc. ACM SIGGRAPH 2000, New Orleans, USA, Jul. 23-28, 2000, pp. 95–102.

  10. Lee A, Moreton H, Hoppe H. Displaced subdivision surfaces. In Proc. SIGGRAPH 2000, New Orleans, USA, Jul. 23-28, 2000, pp. 85–94.

  11. Labsik U, Kobbelt L, Schneider R, Seidel H P. Progressive transmission of subdivision surfaces. Computational Geometry, 2000, 15(1-3): 25–39.

    Article  MATH  MathSciNet  Google Scholar 

  12. Guan W, Cai J, Zheng J, Chen C W. View-based 3D model transmission via mesh segmentation. In Proc. the IEEE International Conference on Multimedia and Expo, Beijing, China, Jul. 2-5, 2007, pp. 1311–1314.

  13. Sander P, Snyder J, Gortler S, Hoppe H. Texture mapping progressive meshes. In Proc. SIGGRAPH 2001, Los Angeles, USA, Aug. 3-8, 2001, pp. 409–416.

  14. Carr N A, Hart C T. Meshed atlases for real-time procedural solid texturing. ACM Transactions on Graphics, 2002, 21(2): 106–131.

    Article  Google Scholar 

  15. Purnomo B, Cohen J D, Kumar S. Seamless texture atlases. In Proc. the Eurographics Symposium on Geometry Processing, Nice, France, Jul. 8-10, 2004, pp. 65–74.

  16. Tarini M, Hormann K, Cignoni P, Montani C. PolyCubemaps. ACM Trans. Graph., 2004, 23(3): 853–860.

    Article  Google Scholar 

  17. Boier-Martin I, Rushmeier H, Jin J. Parameterization of triangle meshes over quadrilateral domains. In Proc. the Euro-graphics Symposium on Geometry Processing, Nice, France, Jul. 8-10, 2004, pp. 193–203.

  18. Sander P, Wood Z, Gortler S,Snyder J, Hoppe H. Multi-chart geometry images. In Proc. Eurographics Symposium on Geometry Processing, Aachen, Germany, Jun. 23-25, 2003, pp. 146–155.

  19. Carr N A, Hoberock J, Crane K, Hart J C. Rectangular multi-chart geometry images. In Proc. Symposium on Geometry Processing, Sardinia, Italy, Jun. 26-28, 2006, pp. 181–190.

  20. Losasso F, Hoppe H, Schaefer S, Warren J. Smooth geometry images. In Proc. the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, Jun. 23-25, 2003, pp. 138–145.

  21. Praun E, Hoppe H. Spherical parametrization and remeshing. ACM Trans. Graph., 2003, 22(3): 340–349.

    Article  Google Scholar 

  22. Peyre G, Mallat S. Surface compression with geometric ban-delets. ACM Transactions on Graphics, 2005, 24(3): 601–608.

    Article  Google Scholar 

  23. Lin J, Jin X, Fan Z, Wang C C L. Automatic polycube-maps. In Proc. the 5th International Conference of Advances in Geometric Modeling and Processing, Hangzhou, China, Apr. 23-25, 2008, pp. 3–16.

  24. Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph., 2002, 21(3): 362–371.

    Article  Google Scholar 

  25. Lin N S, Huang T H, Chen B Y. View-dependent JPEG2000-based mesh streaming. In ACM SIGGRAPH 2006 Research Posters, Aug. 1-3, 2006, p. 177.

  26. Ji J, Wu E, Li S, Liu X. View-dependent refinement of multiresolution meshes using programmable graphics hardware. The Visual Computer, 2006, 22(6): 424–433.

    Article  Google Scholar 

  27. Cignoni P, Rocchini C, Scopigno R. Metro: Measuring error on simplified surfaces. Computer Graphics Forum, 1998, 17(2): 167–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Sheng.

Additional information

This work was supported by the National Basic Research 973 Program of China under Grant No. 2009CB320802, the National Natural Science Foundation of China under Grant Nos. 60473105, 60773030, RGC Research Grant (Ref. 416007), RGC Direct Research Grant (No. 2050349), and Grant of University of Macau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 79.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, B., Meng, WL., Sun, HQ. et al. MCGIM-Based Model Streaming for Realtime Progressive Rendering. J. Comput. Sci. Technol. 26, 166–175 (2011). https://doi.org/10.1007/s11390-011-9423-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-011-9423-8

Keywords

Navigation