Skip to main content

Advertisement

Log in

Structure-Aware Nonlocal Optimization Framework for Image Colorization

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a structure-aware nonlocal energy optimization framework for interactive image colorization with sparse scribbles. Our colorization technique propagates colors to both local intensity-continuous regions and remote texture-similar regions without explicit image segmentation. We implement the nonlocal principle by computing k nearest neighbors in the high-dimensional feature space. The feature space contains not only image coordinates and intensities but also statistical texture features obtained with the direction-aligned Gabor wavelet filter. Structure maps are utilized to scale texture features to avoid artifacts along high-contrast boundaries. We show various experimental results and comparisons on image colorization, selective recoloring and decoloring, and progressive color editing to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reinhard E, Ashikhmin M, Gooch B, Shirley P. Color transfer between images. IEEE Computer Graphics and Applications, 2001, 21(5): 34-41.

    Article  Google Scholar 

  2. Chang Y, Saito S, Nakajima M. Example-based color transformation of image and video using basic color categories. IEEE Trans. Image Processing, 2007, 16(2): 329-336.

    Article  MathSciNet  Google Scholar 

  3. Xiao X, Ma L. Gradient-preserving color transfer. Computer Graphics Forum, 2009, 28(7): 1879-1886.

    Article  Google Scholar 

  4. Levin A, Lischinski D, Weiss Y. Colorization using optimization. ACM Trans. Graphics, 2004, 23(3): 689-694.

    Article  Google Scholar 

  5. Sheng B, Sun H, Chen S, Liu X, Wu E. Colorization using the rotation-invariant feature space. IEEE Computer Graphics Applications, 2011, 31(2): 24-35.

    Article  Google Scholar 

  6. Yatziv L, Sapiro G. Fast image and video colorization using chrominance blending. IEEE Transactions on Image Processing, 2006, 15(5): 1120-1129.

    Article  Google Scholar 

  7. Qu Y, Wong T T, Heng P A. Manga colorization. ACM Transactions on Graphics, 2006, 25(3): 1214-1220.

    Article  Google Scholar 

  8. Luan Q, Wen F, Cohen-Or D, Liang L, Xu Y Q, Shum H Y. Natural image colorization. In Proc. the 18th Eurographics Workshop on Rendering, July 2007, pp.309-320.

  9. Kyprianidis J E, Kang H. Image and video abstraction by coherence-enhancing filtering. Computer Graphics Forum, 2011, 30(2): 593-602.

    Article  Google Scholar 

  10. Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.

    Article  Google Scholar 

  11. Xu L, Yan Q, Xia Y, Jia J. Structure extraction from texture via relative total variation. ACM Transactions on Graphics, 2012, 31(6): 139:1-139:10.

    Google Scholar 

  12. Welsh T, Ashikhmin M, Mueller K. Transferring color to greyscale images. ACM Trans. Graphics, 2002, 21(3): 277-280.

    Article  Google Scholar 

  13. Ironi R, Cohen-Or D, Lischinski D. Colorization by example. In Proc. the Eurographics Symposiums on Rendering Techniques, June 29-July 1, 2005, pp.201-210.

  14. Cohen-Or D, Sorkine O, Gal R, Leyvand T, Xu Y Q. Color harmonization. ACM Trans. Graphics, 2006, 25(3): 624-630.

    Article  Google Scholar 

  15. Liu X, Wan L, Qu Y et al. Intrinsic colorization. ACM Trans. Graphics, 2008, 27(5): 152:1-152:9.

    Article  Google Scholar 

  16. Chia A Y S, Zhuo S, Gupta R K et al. Semantic colorization with internet images. ACM Trans. Graphics, 2011, 30(6): 156:1-156:8.

    Article  Google Scholar 

  17. An X, Pellacini F. AppProp: All-pairs appearance-space edit propagation. ACM Trans. Graphics, 2008, 27(3): 40:1-40:9.

    Article  Google Scholar 

  18. Fattal R. Edge-avoiding wavelets and their applications. ACM Trans. Graphics, 2009, 28(3): Article No. 22.

    Article  Google Scholar 

  19. Xu K, Li Y, Ju T, Hu S M, Liu T Q. Efficient affinity-based edit propagation using k-d tree. ACM Transactions on Graphics, 2009, 28(5): Article No. 118.

    Google Scholar 

  20. Bhat P, Zitnick C L, Cohen M et al. GradientShop: A gradient-domain optimization framework for image and video filtering. ACM Trans. Graphics, 2010, 29(2): 10:1-10:14.

    Article  Google Scholar 

  21. Musialski P, Cui M, Ye J et al. A framework for interactive image color editing. The Visual Computer, 2013, 29(11): 1173-1186.

    Article  Google Scholar 

  22. Huang H, Li X, Zhao H et al. Manifold-preserving image colorization with nonlocal estimation. Multimedia Tools and Applications, 2014. DOI: 10.1007/s11042-014-1991-5.

    Google Scholar 

  23. Jeschke S, Cline D, Wonka P. A GPU Laplacian solver for diffusion curves and Poisson image editing. ACM Transactions on Graphics, 2009, 28(5): 116:1-116:8.

    Google Scholar 

  24. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.

    Article  Google Scholar 

  25. Chen Q, Li D, Tang C K. KNN matting. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, June 2012, pp.869-876.

  26. Buatois L, Caumon G, Levy B. Concurrent number cruncher: A GPU implementation of a general sparse linear solver. International Journal of Parallel, Emergent and Distributed Systems, 2009, 24(3): 205-223.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Li Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61100146 and 61472351, and the Zhejiang Provincial Natural Science Foundation of China under Grant Nos. LY15F020019 and LQ14F020006. Pan was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant No. 2013BAH24F01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, HL., Nie, GZ., Li, XJ. et al. Structure-Aware Nonlocal Optimization Framework for Image Colorization. J. Comput. Sci. Technol. 30, 478–488 (2015). https://doi.org/10.1007/s11390-015-1538-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-015-1538-x

Keywords

Navigation