Skip to main content
Log in

Skeleton-Sectional Structural Analysis for 3D Printing

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

3D printing has become popular and has been widely used in various applications in recent years. More and more home users have motivation to design their own models and then fabricate them using 3D printers. However, the printed objects may have some structural or stress defects as the users may be lack of knowledge on stress analysis on 3D models. In this paper, we present an approach to help users analyze a model’s structural strength while designing its shape. We adopt sectional structural analysis instead of conventional FEM (Finite Element Method) analysis which is computationally expensive. Based on sectional structural analysis, our approach imports skeletons to assist in integrating mesh designing, strength computing and mesh correction well. Skeletons can also guide sections building and load calculation for analysis. For weak regions with high stress over a threshold value in the model from analysis result, our system corrects them by scaling the corresponding bones of skeleton so as to make these regions stiff enough. A number of experiments have demonstrated the applicability and practicability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stava O, Vanek J, Benes B, Carr N, Měch R. Stress relief: Improving structural strength of 3D printable objects. ACM Transactions on Graphics, 2012, 31(4): 48:1–48:11.

    Article  Google Scholar 

  2. Zhou Q, Panetta J, Zorin D. Worst-case structural analysis. ACM Transactions on Graphics, 2013, 32(4): 137:1–137:12.

    MATH  Google Scholar 

  3. Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing optimization. In Proc. SIGGRAPH Asia Technical Briefs, November 2013, pp.5:1–5:4.

  4. Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand: Balancing shapes for 3D fabrication. ACM Transactions on Graphics, 2013, 32(4): 81:1–81:10.

    Article  MATH  Google Scholar 

  5. Bächer M, Whiting E, Bickel B, Sorkine-Hornung O. Spinit: Optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics, 2014, 33(4): 96:1–96:10.

    Article  Google Scholar 

  6. Bickel B, Bächer M, Otaduy M A, Lee H R, Pfister H, Gross M, Matusik W. Design and fabrication of materials with desired deformation behavior. ACM Transactions on Graphics, 2010, 29(4): 63:1–63:10.

    Article  Google Scholar 

  7. Xie Y, Xu W, Yang Y, Guo X, Zhou K. Agile structural analysis for fabrication-aware shape editing. Computer Aided Geometric Design, 2015, 35/36: 163–179.

  8. Hao J, Fang L, Williams R E. An efficient curvature-based partitioning of large-scale STL models. Rapid Prototyping Journal, 2011, 17(2): 116–127.

    Article  Google Scholar 

  9. Luo L, Baran I, Rusinkiewicz S, Matusik W. Chopper: Partitioning models into 3D-printable parts. ACM Transactions on Graphics, 2012, 31(6): 129:1–129:10.

    Google Scholar 

  10. Wang W, Wang T Y, Yang Z, Liu L, Tong X, Tong W, Deng J, Chen F, Liu X. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics, 2013, 32(6): 177:1–177:10.

    Google Scholar 

  11. Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, Savoye Y, Tu C, Cohen-Or D, Chen B. Build-to-last: Strength to weight 3D printed objects. ACM Transactions on Graphics, 2014, 33(4): 97:1–97:10.

    Google Scholar 

  12. Zhang X, Xia Y, Wang J, Yang Z, Tu C, Wang W. Medial axis tree — An internal supporting structure for 3D printing. Computer Aided Geometric Design, 2015, 35(c): 149–162.

    Article  MathSciNet  Google Scholar 

  13. Telea A, Jalba A. Voxel-based assessment of printability of 3D shapes. In Proc. the 10th International Conference on Mathematical Morphology and Its Applications to Image and Signal Processing, July 2011, pp.393-404.

  14. Hašan M, Fuchs M, Matusik W, Pfister H, Rusinkiewicz S. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics, 2010, 29(4): 61:1–61:10.

    Google Scholar 

  15. Dong Y, Wang J, Pellacihi F, Tong X, Guo B. Fabricating spatially-varying subsurface scattering. ACM Transactions on Graphics, 2010, 29(4): 153:1–153:10.

    Google Scholar 

  16. Papas M, Regg C, Jarosz W, Bickel B, Jackson P, Matusik W, Marschner S, Gross M. Fabricating translucent materials using continuous pigment mixtures. ACM Transactions on Graphics, 2013, 32(4): 146:1–146:12.

    Article  MATH  Google Scholar 

  17. Chen D, Levin D I, Didyk P, Sitthi-Amorn P, Matusik W. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Transactions on Graphics, 2013, 32(4): 135:1–135:10.

    Google Scholar 

  18. Weyrich T, Peers P, Matusik W, Rusinkiewicz S. Fabricating microgeometry for custom surface reflectance. ACM Transactions on Graphics, 2009, 28(3): 32:1–32:6.

    Article  Google Scholar 

  19. Levin A, Glasner D, Xiong Y, Durand F, Freeman W, Matusik W, Zickler T. Fabricating BRDFs at high spatial resolution using wave optics. ACM Transactions on Graphics, 2013, 32(4): 144:1–144:13.

    Article  MATH  Google Scholar 

  20. Matusik W, Ajdin B, Gu J, Lawrence J, Lensch H, Pellacini F, Rusinkiewicz S. Printing spatially-varying reflectance. ACM Transactions on Graphics, 2009, 28(5): 128:1–128:10.

    Article  Google Scholar 

  21. Dong Y, Tong X, Pellacini F, Guo B. Printing spatiallyvarying reflectance for reproducing HDR images. ACM Transactions on Graphics, 2012, 31(4): 40:1–40:8.

    Article  Google Scholar 

  22. Malzbender T, Samadani R, Scher S, Crume A, Dunn D, Davis J. Printing reflectance functions. ACM Transactions on Graphics, 2012, 31(3): 20:1–20:11.

    Article  Google Scholar 

  23. Lan Y, Dong Y, Pellacini F, Tong X. Bi-scale appearance fabrication. ACM Transactions on Graphics, 2013, 32(4): 145:1–145:12.

    Article  MATH  Google Scholar 

  24. Vidimče K, Wang S P, Ragan-Kelley J, Matusik W. Open- Fab: A programmable pipeline for multi-material fabrication. ACM Transactions on Graphics, 2013, 32(4): 136:1-136:11.

    Google Scholar 

  25. Song P, Fu C, Cohen-Or D. Recursive interlocking puzzles. ACM Transactions on Graphics, 2012, 31(6): 128:1–128:10.

    Article  Google Scholar 

  26. Xin S, Lai C, Fu C, Wong T, He Y, Cohen-Or D. Making burr puzzles from 3D models. ACM Transactions on Graphics, 2011, 30(4): 97:1–97:8.

    Article  Google Scholar 

  27. Coros S, Thomaszewski B, Noris G, Sueda S, Forberg M, Sumner R W, Matusik W, Bickel B. Computational design of mechanical characters. ACM Transactions on Graphics, 2013, 32(4): 83:1–83:12.

    Article  MATH  Google Scholar 

  28. Zhu L, Xu W, Snyder J, Liu Y, Wang G, Guo B. Motionguided mechanical toy modeling. ACM Transactions on Graphics, 2012, 31(6): 127:1–127:10.

    Article  Google Scholar 

  29. Ceylan D, Li W, Mitra N J, Agrawala M, Pauly M. Designing and fabricating mechanical automata from mocap sequences. ACM Transactions on Graphics, 2013, 32(6): 186:1–186:11.

    Article  Google Scholar 

  30. Bächer M, Bickel B, James D L, Pfister H. Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics, 2012, 31(4): 47:1–47:9.

    Article  Google Scholar 

  31. Cali J, Calian D A, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T. 3D-printing of non-assembly, articulated models. ACM Transactions on Graphics, 2012, 31(6): 130:1–130:8.

    Article  Google Scholar 

  32. Chen Y, Chen Z. Joint analysis in rapid fabrication of nonassembly mechanisms. Rapid Prototyping Journal, 2011, 17(6): 408–417.

    Article  Google Scholar 

  33. Su X, Yang Y, Wang D, Chen Y. Digital assembly and direct fabrication of mechanism based on selective laser melting. Rapid Prototyping Journal, 2013, 19(3): 166–172.

    Article  Google Scholar 

  34. Cornea N D, Silver D, Min P. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3): 530–548.

    Article  Google Scholar 

  35. Au O K C, Tai C L, Chu H K, Cohen-Or D, Lee T Y. Skeleton extraction by mesh contraction. ACM Transactions on Graphics, 2008, 27(3): 44:1–44:10.

    Article  Google Scholar 

  36. Chuang M, Kazhdan M. Fast mean-curvature flow via finiteelements tracking. Computer Graphics Forum, 2011, 30(6): 1750–1760.

    Article  Google Scholar 

  37. Tagliasacchi A, Alhashim I, Olson M, Zhang H. Mean curvature skeletons. Computer Graphics Forum, 2012, 31(5): 1735–1744.

    Article  Google Scholar 

  38. Jiang W, Xu K, Cheng Z Q, Martin R R, Dang G. Curve skeleton extraction by coupled graph contraction and surface clustering. Graphical Models, 2013, 75(3): 137–148.

    Article  Google Scholar 

  39. Dey T K, Sun J. Defining and computing curve-skeletons with medial geodesic function. In Proc. the 4th Symposium on Geometry Processing, June 2006, pp.143-152.

  40. Hilaga M, Shinagawa Y, Kohmura T, Kunii T L. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. the 28th Annual Conference on Computer Graphics and Interactive Techniques, Aug. 2001, pp.203-212.

  41. Katz S, Tal A. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics, 2003, 22(3): 954–961.

    Article  Google Scholar 

  42. Sharf A, Lewiner T, Shamir A, Kobbelt L. On-the-fly curveskeleton computation for 3D shapes. Computer Graphics Forum, 2007, 26(3): 323–328.

    Article  Google Scholar 

  43. Li G, Liu L, Zheng H, Mitra N J. Analysis, reconstruction and manipulation using arterial snakes. ACM Transactions on Graphics, 2010, 29(6): 152:1–152:10.

    Google Scholar 

  44. Cao J, Tagliasacchi A, Olson M, Zhang H, Su Z. Point cloud skeletons via Laplacian based contraction. In Proc. International Conference on Shape Modeling and Applications, June 2010, pp.187-197.

  45. Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. Automatic reconstruction of tree skeletal structures from point clouds. ACM Transactions on Graphics, 2010, 29(6): 151:1–151:8.

    Article  Google Scholar 

  46. Tagliasacchi A, Zhang H, Cohen-Or D. Curve skeleton extraction from incomplete point cloud. ACM Transactions on Graphics, 2009, 28(3): 71:1–71:9.

    Article  Google Scholar 

  47. Bucksch A, Lindenbergh R, Menenti M. SkelTre. The Visual Computer: International Journal of Computer Graphics, 2010, 26(10): 1283–1300.

    Article  Google Scholar 

  48. Natali M, Biasotti S, Patanè G, Falcidieno B. Graph-based representations of point clouds. Graphical Models, 2011, 73(5): 151–164.

    Article  Google Scholar 

  49. Baran I, Popović J. Automatic rigging and animation of 3D characters. ACM Transactions on Graphics, 2007, 26(3): 72:1–72:8.

    Article  Google Scholar 

  50. Beer F P, Jr. Russell Johnston E, DeWolf J T, Mazurek D F. Mechanics of Materials (6th edition). New York: McGraw-Hill, 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Gang Liu.

Additional information

Special Section of CVM 2016

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61222206 and 11526212, the 100 Talents Project of the Chinese Academy of Sciences, the Science and Technology Project of Henan Province of China under Grant No. 162102310090, and the Key Scientific Research Projects of the Higher Education Institutions of Henan Province of China under Grant No. 16A520011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WP., Li, W. & Liu, LG. Skeleton-Sectional Structural Analysis for 3D Printing. J. Comput. Sci. Technol. 31, 439–449 (2016). https://doi.org/10.1007/s11390-016-1638-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-016-1638-2

Keywords

Navigation