Skip to main content
Log in

Variance Analysis and Adaptive Sampling for Indirect Light Path Reuse

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we study the estimation variance of a set of global illumination algorithms based on indirect light path reuse. These algorithms usually contain two passes — in the first pass, a small number of indirect light samples are generated and evaluated, and they are then reused by a large number of reconstruction samples in the second pass. Our analysis shows that the covariance of the reconstruction samples dominates the estimation variance under high reconstruction rates and increasing the reconstruction rate cannot effectively reduce the covariance. We also find that the covariance represents to what degree the indirect light samples are reused during reconstruction. This analysis motivates us to design a heuristic approximating the covariance as well as an adaptive sampling scheme based on this heuristic to reduce the rendering variance. We validate our analysis and adaptive sampling scheme in the indirect light field reconstruction algorithm and the axis-aligned filtering algorithm for indirect lighting. Experiments are in accordance with our analysis and show that rendering artifacts can be greatly reduced at a similar computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lehtinen J, Aila T, Laine S, Durand F. Reconstructing the indirect light field for global illumination. ACM Transactions on Graphics, 2012, 31(4): 51:1–51:10.

    Article  Google Scholar 

  2. Mehta S U, Wang B, Ramamoorthi R, Durand F. Axisaligned filtering for interactive physically-based diffuse indirect lighting. ACM Transactions on Graphics, 2013, 32(4): Article No. 96.

  3. Kajiya J T. The rendering equation. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 143–150.

    Article  Google Scholar 

  4. Lafortune E P, Willems Y D. Bi-directional path tracing. In Proc. the 3rd Annual Conference on Computation/Graphics and Visualization Techniques, Aug. 1993, pp.145-153.

  5. Veach E, Guibas L. Bidirectional estimators for light transport. In Proc. EGRW, Jun. 1994, pp.147-162.

  6. Dutré P. Mathematical frameworks and Monte Carlo algorithms for global illumination in computer graphics [Ph.D. Thesis]. Department of Computer Science, Katholieke Universiteit Leuven, 1996.

  7. Ashikhmin M, Premože S, Shirley P, Smits B. A variance analysis of the Metropolis Light Transport algorithm. Computers & Graphics, 2001, 25(2): 287–294.

    Article  Google Scholar 

  8. Veach E, Guibas L J. Metropolis light transport. In Proc. the 24th Annual Conference on Computer Graphics and Interactive Techniques, Aug. 1997, pp.65-76.

  9. Kelemen C, Szirmay-Kalos L, Antal G, Csonka F. A simple and robust mutation strategy for the metropolis light transport algorithm. Computer Graphics Forum, 2002, 21(3): 531–540.

    Article  Google Scholar 

  10. Bekaert P, Sbert M, Halton J. Accelerating path tracing by re-using paths. In Proc. the 13th Eurographics Workshop on Rendering, Jun. 2002, pp.125-134.

  11. M´endez-Feliu A, Sbert M, Szirmay-Kalos L. Reusing frames in camera animation. J. WSCG, 2006, 13(1/2/3): 97–104.

  12. Keller A. Instant radiosity. In Proc. the 24th Annual Conference on Computer Graphics and Interactive Techniques, Aug. 1997, pp.49-56.

  13. Walter B, Fernandez S, Arbree A, Bala K, Donikian M, Greenberg D P. Lightcuts: A scalable approach to illumination. ACM Trans. Graphics, 2005, 24(3): 1098–1107.

    Article  Google Scholar 

  14. Jensen H W. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd., 2009.

  15. Knaus C, Zwicker M. Progressive photon mapping: A probabilistic approach. ACM Transactions on Graphics, 2011, 30(3): 25:1–25:13.

    Article  Google Scholar 

  16. Hachisuka T, Ogaki S, Jensen H W. Progressive photon mapping. ACM Transactions on Graphics, 2008, 27(5): 130:1–130:8.

    Article  Google Scholar 

  17. Georgiev I, Křivánek J, Davidovič T, Slusallek P. Light transport simulation with vertex connection and merging. ACM Transactions on Graphics, 2012, 31(6): 192:1–192:10.

    Article  Google Scholar 

  18. Hachisuka T, Pantaleoni J, Jensen H W. A path space extension for robust light transport simulation. ACM Transactions on Graphics, 2012, 31(6): 191:1–191:10.

    Article  Google Scholar 

  19. Mitchell D P. Generating antialiased images at low sampling densities. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 65–72.

    Article  Google Scholar 

  20. Mitchell D P. Spectrally optimal sampling for distribution ray tracing. ACM SIGGRAPH Computer Graphics, 1991, 25(4): 157–164.

    Article  Google Scholar 

  21. Rigau J, Feixas M, Sbert M. Refinement criteria based on f-divergences. In Proc. the 14th Eurographics Workshop on Rendering, Jun. 2003, pp.260-269.

  22. Hachisuka T, Jarosz W, Weistroffer R P, Dale K, Humphreys G, Zwicker M, Jensen H W. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Transactions on Graphics, 2008, 27(3): 33:1–33:10.

    Article  Google Scholar 

  23. Lee M E, Redner R A, Uselton S P. Statistically optimized sampling for distributed ray tracing. ACM SIGGRAPH Computer Graphics, 1985, 19(3): 61–68.

    Article  Google Scholar 

  24. Xu Q, Sbert M, Feixas M, Scopigno R. A new refinement criterion for adaptive sampling in path tracing. In Proc. the Int. Symp. Industrial Electronics (ISIE), 2010, pp.1556-1561.

  25. Overbeck R S, Donner C, Ramamoorthi R. Adaptive wavelet rendering. ACM Transactions on Graphics, 2009, 28(5): 140:1–140:12.

    Article  Google Scholar 

  26. Durand F, Holzschuch N, Soler C, Chan E, Sillion F X. A frequency analysis of light transport. ACM Transactions on Graphics, 2005, 24(3): 1115–1126.

    Article  Google Scholar 

  27. Egan K, Tseng Y T, Holzschuch N et al. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graphics, 2009, 28(3): 93:1–93:13.

    Article  Google Scholar 

  28. Soler C, Subr K, Durand F, Holzschuch N, Sillion F. Fourier depth of field. ACM Transactions on Graphics, 2009, 28(2): 18:1–18:12.

    Article  Google Scholar 

  29. Egan K, Hecht F, Durand F, Ramamoorthi R. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Transactions on Graphics, 2011, 30(2): 9:1–9:13.

    Article  Google Scholar 

  30. Mehta S U, Wang B, Ramamoorthi R. Axis-aligned filtering for interactive sampled soft shadows. ACM Transactions on Graphics, 2012, 31(6): 163:1–163:10.

    Article  Google Scholar 

  31. Belcour L, Soler C, Subr K, Holzschuch N, Durand F. 5D covariance tracing for efficient defocus and motion blur. ACM Transactions on Graphics, 2013, 32(3): 31:1–31:18.

    Article  MATH  Google Scholar 

  32. Fredo D. A frequency analysis of Monte-Carlo and other numerical integration schemes. Technical Report, MIT-CSAIL-TR-2011-052, 2011. https://dspace.mit.edu/handle/1721.1/67677, Feb. 2016.

  33. Ramamoorthi R, Anderson J, Meyer M, Nowrouzezahrai D. A theory of Monte Carlo visibility sampling. ACM Transactions on Graphics, 2012, 31(5): 121:1–121:16.

    Article  Google Scholar 

  34. Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu R, Pattanaik S N. Non-iterative, robust Monte Carlo noise reduction. IEEE CGA, 2005, 25(2): 31–35.

    Google Scholar 

  36. Rousselle F, Knaus C, Zwicker M. Adaptive rendering with non-local means filtering. ACM Transactions on Graphics, 2012, 31(6): 195:1–195:11.

    Article  Google Scholar 

  37. Dammertz H, Sewtz D, Hanika J, Lensch H P A. Edgeavoiding Á-Trous wavelet transform for fast global illumination filtering. In Proc. the Conference on High Performance Graphics, Jun. 2010, pp.67-75.

  38. Shirley P, Aila T, Cohen J, Enderton E, Laine S, Luebke D, McGuire M. A local image reconstruction algorithm for stochastic rendering. In Proc. the Symposium on Interactive 3D Graphics and Games, Feb. 2011, pp.9-14.

  39. Sen P, Darabi S. On filtering the noise from the random parameters in Monte Carlo rendering. ACM Transactions on Graphics, 2012, 31(3): 18:1–18:15.

    Article  Google Scholar 

  40. Li T M, Wu Y T, Chuang Y Y. SURE-based optimization for adaptive sampling and reconstruction. ACM Transactions on Graphics, 2012, 31(6): 194:1–194:9.

    Google Scholar 

  41. Xu Q, Sbert M. A new way to re-using paths. In Lecture Notes in Computer Science 4706, Gervasi O, Gavrilova M (eds.), Springer Berlin Heidelberg, 2007, pp.741-750.

    Google Scholar 

  42. Sbert M. Error and complexity of random walkMonte Carlo radiosity. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 23–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Qin.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61472352, 61379070, and 61272305, and the National High Technology Research and Development 863 Program of China under Grant No. 2012AA010903.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Sun, X., Yan, J. et al. Variance Analysis and Adaptive Sampling for Indirect Light Path Reuse. J. Comput. Sci. Technol. 31, 547–560 (2016). https://doi.org/10.1007/s11390-016-1646-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-016-1646-2

Keywords