Skip to main content
Log in

Image Smoothing Based on Image Decomposition and Sparse High Frequency Gradient

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Image smoothing is a crucial image processing topic and has wide applications. For images with rich texture, most of the existing image smoothing methods are difficult to obtain significant texture removal performance because texture containing obvious edges and large gradient changes is easy to be preserved as the main edges. In this paper, we propose a novel framework (DSHFG) for image smoothing combined with the constraint of sparse high frequency gradient for texture images. First, we decompose the image into two components: a smooth component (constant component) and a non-smooth (high frequency) component. Second, we remove the non-smooth component containing high frequency gradient and smooth the other component combining with the constraint of sparse high frequency gradient. Experimental results demonstrate the proposed method is more competitive on efficiently texture removing than the state-of-the-art methods. What is more, our approach has a variety of applications including edge detection, detail magnification, image abstraction, and image composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268.

    Article  MathSciNet  MATH  Google Scholar 

  2. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In Proc. the 6th IEEE Int. Conf. Computer Vision, January 1998, pp.839-846.

  3. Farbman Z, Fattal R, Lischinski D, Szeliski R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graphics, 2008, 27(3): Article No. 67.

  4. Subr K, Soler C, Durand F. Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graphics, 2009, 28(5): Article No. 147.

  5. Cho S, Lee S. Fast motion deblurring. ACM Trans. Graphics, 2009, 28(5): Article No. 145.

  6. Xu L, Lu C W, Xu Y, Jia J Y. Image smoothing via L gradient minimization. ACM Trans. Graphics, 2011, 30(6): Article No. 174.

  7. Xu L, Yan Q, Xia Y, Jia J Y. Structure extraction from texture via relative total variation. ACM Trans. Graphics, 2012, 31(6): Article No. 139.

  8. Li X Y, Gu Y, Hu S M, Martin R R. Mixed-domain edge-aware image manipulation. IEEE Trans. Image Processing, 2013, 22(5): 1915-1925.

    Article  MathSciNet  MATH  Google Scholar 

  9. He K M, Sun J, Tang X O. Guided image filtering. IEEE Trans. Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

    Article  Google Scholar 

  10. Karacan L, Erdem E, Erdem A. Structure-preserving image smoothing via region covariances. ACM Trans. Graphics, 2013, 32(6): Article No. 176.

  11. Min D B, Choi S, Lu J B, Ham B, Sohn K, Do M N. Fast global image smoothing based on weighted least squares. IEEE Trans. Image Processing, 2014, 23(12): 5638-5653.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang Q, Shen X Y, Xu L, Jia J Y. Rolling guidance filter. In Proc. the 13th European Conf. Computer Vision, September 2014, pp.815-830.

  13. Bao L C, Song Y B, Yang Q X, Yuan H, Wang G. Tree filtering: Efficient structure-preserving smoothing with a minimum spanning tree. IEEE Trans. Image Processing, 2014, 23(2): 555-569.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bi S, Han X G, Yu Y Z. An L 1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Trans. Graphics, 2015, 34(4): Article No. 78.

  15. Paris S, Hasinoff S W, Kautz J. Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid. Communications of the ACM, 2015, 58(3): 81-91.

    Article  Google Scholar 

  16. Zang Y, Huang H, Zhang L. Guided adaptive image smoothing via directional anisotropic structure measurement. IEEE Trans. Visualization and Computer Graphics, 2015, 21(9): 1015-1027.

    Article  Google Scholar 

  17. Liu Q, Zhang C M, Guo Q, Zhou Y F. A nonlocal gradient concentration method for image smoothing. Computational Visual Media, 2015, 1(3): 197-209.

    Article  Google Scholar 

  18. Zheng S F, Song C W, Zhang H Z, Yan Z F, Zuo W M. Learning-based weighted total variation for structure preserving texture removal. In Proc. Chinese Conf. Pattern Recognition, November 2016, pp.147-160.

  19. Gu S H, Zuo W M, Xie Q, Meng D Y, Feng X C, Zhang L. Convolutional sparse coding for image super-resolution. In Proc. IEEE Int. Conf. Computer Vision, December 2015, pp.1823-1831.

  20. Zhang M L, Desrosiers C. Image completion with global structure and weighted nuclear norm regularization. In Proc. IEEE Int. Joint Conf. Neural Networks, May 2017, pp.4187-4193.

  21. Lu S P, Dauphin G, Lafruit G, Munteanu A. Color retargeting: Interactive time-varying color image composition from time-lapse sequences. Computational Visual Media, 2015, 1(4): 321-330.

    Article  Google Scholar 

  22. Wu L Q, Liu Y P, Brekhna, Liu N, Zhang C M. High-resolution images based on directional fusion of gradient. Computational Visual Media, 2016, 2(1): 31-43.

  23. Li Q H, Fang Y M, Xu J T. A novel spatial pooling strategy for image quality assessment. Journal of Computer Science and Technology, 2016, 31(2): 225-234.

    Article  Google Scholar 

  24. Xie H, Tong R. Patch-based variational image approximation. Science China Information Sciences, 2017, 60(3): 032104.

    Article  Google Scholar 

  25. Du H W, Zhang Y F, Bao F X, Wang P, Zhang C M. A texture feature preserving image interpolation algorithm via gradient constraint. Communications in Information and Systems, 2016, 16(4): 203-227.

    Article  MathSciNet  Google Scholar 

  26. Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society, 2001.

  27. Yin W T, Goldfarb D, Osher S. Image cartoon-texture decomposition and feature selection using the total variation regularized L 1 functional. In Proc. Variational Geometric and Level Set Methods in Computer Vision, October 2005, pp.73-84.

  28. Aujol J F, Gilboa G, Chan T, Osher S. Structure-texture image decomposition-modeling, algorithms, and parameter selection. International Journal of Computer Vision, 2006, 67(1): 111-136.

    Article  MATH  Google Scholar 

  29. Wang Y L, Yang J T, Yin W T, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272.

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang S H, Li X Y, Hu S M, Martin R R. Online video stream abstraction and stylization. IEEE Trans. Multimedia, 2011, 13(6): 1286-1294.

    Article  Google Scholar 

  31. Pérez P, Gangnet M, Blake A. Poisson image editing. ACM Trans. Graphics, 2003, 22(3): 313-318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Mei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, GH., Zhang, ML., Li, XM. et al. Image Smoothing Based on Image Decomposition and Sparse High Frequency Gradient. J. Comput. Sci. Technol. 33, 502–510 (2018). https://doi.org/10.1007/s11390-018-1834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-018-1834-3

Keywords

Navigation