Abstract
To understand the content of ultrasound images more conveniently and more quickly, in this paper, we propose a coarse-to-fine ultrasound image captioning ensemble model, which can automatically generate the annotation text that is composed of relevant n-grams to describe the disease information in the ultrasound images. First, the organs in the ultrasound images are detected by the coarse classification model. Second, the ultrasound images are encoded by the corresponding fine-grained classification model according to the organ labels. Finally, we input the encoding vectors to the language generation model, and the language generation model generates automatically annotation text to describe the disease information in the ultrasound images. In our experiments, the encoding model can obtain the high accuracy rate in the ultrasound image recognition. And the language generation model can automatically generate high-quality annotation text. In practical applications, the coarse-to-fine ultrasound image captioning ensemble model can help patients and doctors obtain the well understanding of the contents of ultrasound images.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chen H, Zheng Y, Park J H, Heng P A, Zhou S K. Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In Proc. MICCAI, Jul. 2016, pp.487-495.
Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. In Proc. CVPR, Jun. 2015, pp.3156-3164.
Chen H, Dou Q, Ni D, Cheng J Z, Qin J, Li S. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In Proc. MICCAI, Oct. 2015, pp.507-514.
Yu Z, Ni D, Chen S, Li S, Wang T, Lei B. Fetal facial standard plane recognition via very deep convolutional networks. In Proc. EMBC, Aug. 2016, pp.627-630.
Cheng PM,Malhi H S. Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. Journal of Digital Imaging, 2017, 30(2): 1-10.
Liu X, Shi J, Zhang Q. Tumor classification by deep polynomial network and multiple kernel learning on small ultrasound image dataset. In Proc. MLMI, Oct. 2015, pp.313-320.
Gao Y, MaraciM A, Noble J A. Describing ultrasound video content using deep convolutional neural networks, international symposium on biomedical imaging. In Proc. ISBI, Apr. 2016, pp.787-790.
Milletari F, Ahmadi S A, Kroll C, Plate A, Rozanski V, Maiostre J. Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound. Computer Vision and Image Understanding, 2017, 164: 92-102.
Farhadi A, Hejrati M, Sadeghi M A, Young P, Rashtchian C, Hockenmaier J, Forsyth D. Every picture tells a story: Generating sentences from images. In Proc. ECCV, Sept. 2010, pp.15-29.
Li S, Kulkarni G, Berg T L, Berg A C, Choi Y. Composing simple image descriptions using web-scale n-grams. In Proc. IWCS, Apr. 2011, pp.220-228.
Kulkarni G, Premraj V, Ordonez V, Dhar S, Li S, Choi Y. BabyTalk: Understanding and generating simple image descriptions. Pattern Analysis and Machine Intelligence, 2013, 35(12): 2891-2903.
Mitchell M, Han X, Dodge J, Mensch A, Goyal A, Berg A. Midge: Generating image descriptions from computer vision detections. In Proc. EACL, Apr. 2012, pp.747-756.
Aker A, Gaizauskas R. Generating image descriptions using dependency relational patterns. In Proc. ACL, Jul. 2010, pp.1250-1258.
Kuznetsova P, Ordonez V, Berg A C, Berg T L, Choi Y. Collective generation of natural image descriptions. In Proc. ACL, Jul. 2012, pp.359-368.
Cho K, Merrienboer B V, Gulcehre C, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. EMNLP, Oct. 2014, pp.1724-1734.
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014. https://arxiv.org/abs/1409.0473, Jan. 2018.
Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In Proc. NIPS, Dec. 2014, pp.3104-3112.
Mao J, Xu W, Yang Y, Wang J, Yuille A L. Deep captioning with multimodal recurrent neural networks. arXiv:1412.6632, 2014. https://arxiv.org/abs/1412.6632, Jan. 2018.
Kiros R, Salakhutdinov R, Zemel R. Multimodal neural language models. In Proc. ICML, Jun. 2014, pp.595-603.
Karpathy A, Li F F. Deep visual-semantic alignments for generating image descriptions. In Proc. CVPR, Jun. 2015, pp.3128-3137.
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R. Show, attend and tell: Neural image caption generation with visual attention. In Proc. ICML, Jul. 2015, pp.2048-2057.
Liu C, Mao J, Sha F, Yuille A. Attention correctness in neural image captioning. In Proc. AAAI, Feb. 2017, pp.4176-4182.
You Q, Jin H, Wang Z, Luo J. Image captioning with semantic attention. In Proc. CVPR, Jun. 2016, pp.4651-4659.
Yang Z, Yuan Y, Wu Y, Salakhutdinov R, Cohen W W. Review networks for caption generation. In Proc. NIPS, Dec. 2016, pp.2369-2377.
Wu Q, Shen C, Liu L, Hengel A V D.What value do explicit high level concepts have in vision to language problems. In Proc. CVPR, Jun. 2016, pp.203-212.
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, Dec. 2012, pp.1097-1105.
Simonyan A, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014. https://arxiv.org/abs/1409.1556, Jan. 2018.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D. Going deeper with convolutions. In Proc. CVPR, Jun. 2015.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proc. CVPR, Jun. 2016, pp.770-778.
Toshev A, Szegedy C. DeepPose: Human pose estimation via deep neural networks. In Proc. CVPR, Jun. 2014, pp.1653-1660.
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In Proc. CVPR, Jun. 2015, pp.3431-3440.
Wan J, Wang D, Hoi S C H, Wu P, Zhu J, Zhang Y. Deep learning for content-based image retrieval: A comprehensive study. In Proc. ACM Multimedia, Nov. 2014, pp.157-166.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks. In Proc. NIPS, Dec. 2014, pp.3320-3328.
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: A large-scale hierarchical image database. In Proc. CVPR, Jun. 2009, pp. 248-255.
Graves A. Long Short-Term Memory. Berlin, Heidelberg: The Springer Press, 2012.
Jia Y, Shelhamer E, Donahue J et al. Caffe: Convolutional architecture for fast feature embedding. In Proc. ACM Multimedia, Nov. 2014, pp.675-678.
Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines. In Proc. ICML, Jun. 2010, pp.807-814.
Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. Computer Science, 2012, 3(4): 212-223.
Papineni K, Roukos S, Ward T, Zhu WJ. BLEU: A method for automatic evaluation of machine translation. Wireless Networks, 2002, 4(4): 307-318.
Lin C Y. ROUGE: A package for automatic evaluation of summaries. In Proc. WAS, Jan. 2004, pp.155-156.
Lavie A, Agarwal A. Meteor: An automatic metric for MT evaluation with high levels of correlation with human judgments. In Proc. ACL, Jun. 2007, pp.228-231.
Vedantam R, Zitnick C L, Parikh D. CIDEr: Consensusbased image description evaluation. In Proc. CVPR, June 2015, pp.4566-4575.
Chen X, Fang H, Lin T Y, Vedantam R, Gupta S, Dollar P. Microsoft COCO captions: Data collection and evaluation server. arXiv:1504.00325, 2015. https://arxiv.org/abs/1504.00325, Jan. 2018.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 974 kb)
Rights and permissions
About this article
Cite this article
Zeng, XH., Liu, BG. & Zhou, M. Understanding and Generating Ultrasound Image Description. J. Comput. Sci. Technol. 33, 1086–1100 (2018). https://doi.org/10.1007/s11390-018-1874-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11390-018-1874-8