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Abstract Deep neural networks (DNNs) have been extensively studied in medical image segmentation. However, existing

DNNs often need to train shape models for each object to be segmented, which may yield results that violate cardiac

anatomical structure when segmenting cardiac magnetic resonance imaging (MRI). In this paper, we propose a capsule-

based neural network, named Seg-CapNet, to model multiple regions simultaneously within a single training process. The

Seg-CapNet model consists of the encoder and the decoder. The encoder transforms the input image into feature vectors

that represent objects to be segmented by convolutional layers, capsule layers, and fully-connected layers. And the decoder

transforms the feature vectors into segmentation masks by up-sampling. Feature maps of each down-sampling layer in

the encoder are connected to the corresponding up-sampling layers, which are conducive to the backpropagation of the

model. The output vectors of Seg-CapNet contain low-level image features such as grayscale and texture, as well as semantic

features including the position and size of the objects, which is beneficial for improving the segmentation accuracy. The

proposed model is validated on the open dataset of the Automated Cardiac Diagnosis Challenge 2017 (ACDC 2017) and the

Sunnybrook Cardiac Magnetic Resonance Imaging (MRI) segmentation challenge. Experimental results show that the mean

Dice coefficient of Seg-CapNet is increased by 4.7% and the average Hausdorff distance is reduced by 22%. The proposed

model also reduces the model parameters and improves the training speed while obtaining the accurate segmentation of

multiple regions.
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1 Introduction

The task of image segmentation is to categorize

each pixel into nonoverlapping regions according to the

grayscale, color, texture, shape, and other image fea-

tures. Image segmentation is a fundamental task of

computer vision and image processing, laying the foun-

dation for high-level computer vision tasks, such as ob-

ject tracking and computer-aided diagnosis. In medical

imaging, accurate segmentation of tissues enables the

quantitative measurements of pathological indices such

as histomorphology parameters of lesions, which pro-

vides a reliable basis for clinical diagnosis, treatment,

and pathology research.

Segmentation of medical images is still an open is-

sue due to the low contrast between tissues and the

background, considerable noises, and blurred object

boundaries. In the last decades, shape-based image

segmentation methods including active shape model

(ASM) [1, 2] and active appearance model (AAM) [3, 4]
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have attracted much attention. ASM has shown its po-

tential in feature extraction and object detection. How-

ever, it only uses texture information of the object to

select features, resulting in their sensitivity to the initial

state, image noise, etc. Based on ASM, AAM makes full

use of global texture information to establish a global

grayscale model which reflects texture changes. Though

AAM takes advantage of building a global representa-

tion of the object shape, its performance of capturing

details of complex objects is still needed to be improved.

Segmentation methods via multi-atlas [5] transform the

image segmentation into image registration [6] by incor-

porating prior information. The segmentation is ob-

tained by performing image registration of several man-

ually delineated images on the target image to search

object shapes. Because Atlas-based algorithms only use

a limited number of labeled images, considerable devia-

tions from actual shapes may occur when dealing with

complex scenarios due to inadequate representation abi-

lity. At present, the deep neural network (DNN) has re-

ceived extensive attention in the segmentation of medi-

cal images [7] due to its superior autonomous feature ex-

traction and feature representation [8]. Moreover, com-

pared with other medical image segmentation methods,

DNNs deal with noise and unevenness in image segmen-

tation in an intrinsic manner. However, existing DNNs

train shape models for the multiple regions separately,

which may lead to erroneous segmentation. For ex-

ample, the predicted endocardium of the cardiac left

ventricle may intersect with the predicted epicardium

of the left ventricle.

To address this, we propose a capsule-based neu-

ral network, named Seg-CapNet, to model the endo-

cardium and epicardium of the left ventricle within a

single training process. We use the capsule network as

the encoder to produce two vectors representing the en-

docardium and the epicardium so as to simultaneously

train models for these two objects. In this way, it en-

ables us to impose constraints to maintain the spatial

relationship between them. Therefore, Sep-CapNet can

model multiple regions in a parallel fashion. To main-

tain the spatial relationship between the endocardium

and the epicardium, we propose a loss function named

coverage ratio in addition to Dice-based loss to train the

model parameters through backpropagation. The main

contributions of this paper are summarized as follows.

Firstly, a capsule-based segmentation neural net-

work is proposed. In contrast to fully convolutional

network (FCN) based models, such as U-Net and Seg-

Net, our model can extract more information about the

object. Moreover, our model integrates the encoder and

the decoder in one network instead of two separated

networks used in existing capsule-based segmentation

networks.

Secondly, we propose a new segmentation frame-

work for the left ventricle of the heart, which can be

easily extended to the segmentation of multiple regions,

such as multi-organ segmentation from images of com-

puted tomography (CT) or magnetic resonance imaging

(MRI).

Finally, we propose a new loss function to maintain

the spatial relationship between the endocardium and

the epicardium, which tries to keep the segmentation

results coherent with the cardiac anatomical structure.

The rest of this paper is organized as follows. Re-

lated work is reviewed in Section 2. The proposed

model is introduced detailedly in Section 3, followed

by experiments, and comparisons and analysis in Sec-

tions 4 and 5 respectively. The proposed model is con-

cluded in Section 6.

2 Related Work

Cardiac MRI provides a qualitative estimation of

cardiac functions and has important clinical significance

for the early diagnosis of heart diseases. However, the

considerable intensity inhomogeneity and high anatom-

ical variability make the segmentation of cardiac MRI

images an open issue. In contrast to existing medical

image segmentation methods, DNN provides an end-to-

end manner to extract objects from image data. Mean-

while, the great number of neuron connections and non-

linear transformation enable it to handle noise and non-

uniformity.

Convolutional neural network (CNN) based seg-

mentation models are one type of the most widely

used neural network architectures [9]. The neural net-

work models proposed by Badrinarayanan et al. [10, 11]

have achieved promising segmentation performance in

many fields. On the basis of CNN, the above seg-

mentation model replaces the last fully-connected layer

with the convolutional layer. Then, the feature maps

are restored to the original size by deconvolution

operation [12] to predict the classification of each im-

age pixel. And finally, the segmentation is transformed

into a classification problem. Generally, this type of

neural networks is the FCN model [13].

The majority of existing DNN algorithms in im-

age segmentation originate from FCN. For example, a

typical “encoder-decoder” structure in the segmenta-

tion field called U-Net is based on FCN and is mainly
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applied to medical image segmentation [14]. SegNet

is based on the semantic segmentation task of FCN.

The symmetrical structure of the encoder and the de-

coder on it is built to achieve pixel-level image seg-

mentation. To maintain the spatial information during

the down-sampling process, a context-coding network

named CE-Net was proposed to capture semantic infor-

mation and retain spatial information for 2D medical

image segmentation [15]. FCN-based models have been

widely used in medical segmentation tasks; however,

they need to train shape models for the endocardium

and the epicardium separately.

The loss function plays an important role in the

training process. The commonly-used loss functions

in FCN-based segmentation networks are Dice-based

loss, cross-entropy loss, and their variants. These func-

tions evaluate each pixel separately, judging whether

a pixel is correctly predicted by the network. To ob-

tain a better accuracy and robustness, many loss func-

tions have been proposed, such as noise-robust loss [16],

topology-preserving loss [17], Hausdorff-based loss [18],

contour Dice coefficient loss [19]. These loss functions

work well in the segmentation of a single object, but

they cannot maintain the spatial relationship among

multiple objects.

The concept of “capsules” in artificial neural net-

works was firstly introduced by Hinton et al. [20] Af-

terwards, Sabour et al. [21] introduced the capsule net-

work which extracts both low- and high-level informa-

tion through capsules updated by the dynamic routing

algorithm. Some recent work applies the capsule net-

work to segmentation tasks by transforming the seg-

mentation into the classification problem. A capsule

network model named SegCaps [22] was proposed by

LaLonde for binary segmentation. Kromm and Rohr

proposed an inception-based capsule network for the

segmentation of vessel images [23]. He et al. combined

the Fourier transform for LV region localization and the

capsule network for the left ventricle segmentation [24].

Though these models can obtain segmentation via cap-

sule network, only one target region can be modeled

in each training process. Moreover, the encoder and

the decoder of these models are built in two separated

networks.

In this paper, we propose a capsule-based neural

network and a spatial information aware loss function

to simultaneously model the endocardium and the epi-

cardium of the left ventricle.

3 Seg-CapNet

This section will mainly focus on the topology and

loss function of the Seg-CapNet model. Fig.1 shows the

overview of Seg-CapNet. The model consists of four

main parts: the convolutional layers, capsule layers,

fully-connected layers, and up-sampling layers. Seg-

CapNet encodes multiple objects from the image as vec-

tors containing grayscale, texture, location, orientation,
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Fig.1. Overview of Seg-CapNet. The dashed boxes with colored backgrounds are the main contribution of our model. CR loss means
coverage ratio loss which imposes constraints on the spatial relationship between predicted regions.
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spatial, and other information of the object. Then, the

segmentation is obtained by a decoder that consists of

two parallel up-sampling processes.

The convolutional layers are composed of two down-

sampling processes. To maintain the spatial infor-

mation, Cap-SegNet implements down-sampling with

strides instead of max pooling or average pooling. The

capsule layers consist of the primary and the digital

capsule layer. Feature maps obtained from the convo-

lutional layers are reorganized as vectors that are con-

nected with those in the first digital capsule layer. Two

vectors are generated to represent the endocardium and

the epicardium respectively. The number of vectors can

be easily added or reduced according to the number of

segmented objects. To reconstruct the spatial infor-

mation and improve the quality of up-sampling layers,

the fully-connected layers are added to map the vec-

tors to a latent space. The fully-connected layers and

up-sampling layers are divided into two parts, and each

of them extracts one object. Each up-sampling process

is composed of three deconvolutional blocks. In order

to accelerate the convergence and improve segmenta-

tion accuracy, concatenation operation is performed to

the last two deconvolutional layers. In order to main-

tain the spatial relationship between the endocardium

and the epicardium, a novel loss function named cov-

erage ratio (CR) loss is combined with Dice-based loss

to train the model parameters.

3.1 Convolutional Layers

Existing CNN models mainly adopt the pooling ope-

ration for the feature dimension reduction, data com-

pression, and parameter quantity, so as to alleviate

overfitting. However, this operation may result in the

loss of spatial information. Seg-CapNet controls the

size of feature maps through convolution layers with

strides to maintain spatial information in the feature

maps.

As shown in Fig.1, the size of the input image is

128× 128. All convolution layers extract features by

9× 9 kernels. There are 32 kernels in the first two con-

volutional layers, 64 kernels in the third and the fourth

layers respectively, and 128 kernels in the last layer.

During the down-sampling, convolutions with strides

of 2 are used. The output of convolutional layers is

activated by the Relu function [25] defined as (1).

fRelu(x) = max(x, 0). (1)

Compared with other activation functions, Relu

converges faster and produces less gradient disappear-

ance.

Batch normalization (BN) [26] is added in the convo-

lution layers to accelerate the training, alleviate over-

fitting, and improve the generalization of SegCaps-Net.

3.2 Capsule Layers

Capsule layers consist of the primary capsule layer

and the digital capsule layer. The primary capsule re-

ceives feature maps obtained from the convolutional

layers and generates feature combinations. This layer

firstly performs convolution operation on the output

of the fifth convolutional layer. There are 128 origi-

nal capsule convolutional kernels with the size of 9× 9

and strides of 2. Output of the primary capsule layer

is a tensor of size 8 192× 8. The digital capsule pro-

duces two vectors which represent features of the endo-

cardium and the epicardium respectively. The size of

each feature vector is 32. Parameters that connect the

primary capsule layer to the digital capsule layer are

updated through dynamic routing.

3.3 Fully-Connected Layers

The spatial relationships among pixels in the feature

map are changed during the dynamic routing. Thus,

two fully-connected layers are added to recover spatial

information before up-sampling. In Seg-CapNet, the

two vectors produced by the capsule layers are mapped

to two 1 024-dimensional vectors. The vectors are then

reshaped into tensors of size 4× 16× 16. The output

of the fully-connected layers is activated by the Relu

function.

3.4 Up-Sampling Layers

The up-sampling layers are composed of three up-

sampling blocks. Each block contains one deconvolu-

tional layer and two convolution layers. The activation

function in these layers is chosen as the Relu function.

The output of the fully-connected layer is reshaped to

tensors of size 4× 16× 16, which is inputted to the first

deconvolutional layer. In order to recover more details

during the up-sampling process, feature fusion is per-

formed by the concatenation between deconvolutional

layers and the corresponding convolutional layers dur-

ing the down-sampling, as shown in Fig.1. The size of

kernels in each deconvolutional layer is chosen as 9× 9.

And the size of kernels in each convolution layer is cho-

sen as 3× 3. The number of kernels in the three blocks
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are 128, 64, and 64 respectively. The output of the third

up-sampling process is a mask which has the same size

with the input image. The segmentation result is a bi-

nary image, which is activated by the sigmoid function

in the last layer. The sigmoid function is defined as (2).

fsigmoid(x) =
1

1 + e−x
. (2)

3.5 Loss Function

In medical image segmentation, the Dice coefficient

is usually used to evaluate the similarity between the

segmentation results and the ground truth. Dice coef-

ficient measures the overlap between the two compared

regions. Let Ω : R2 → R be the image domain, w and h

be the width and the height of the image respectively.

The Dice coefficient is defined as (3).

D(yg, yp) =
2 |yg ∩ yp|
|yg|+ |yp|

, (3)

where yg : Ω 7→ {0, 1}w×h is the ground truth, 0 and

1 represent the background and the foreground pixels

respectively, and yp : Ω 7→ {0, 1}w×h is the predicted

mask. | · | means the number of the elements of a col-

lection.

The Dice coefficient varies from 0 to 1, and the closer

it approaches to 1, the better the segmentation result

is. To minimize the loss function, we use 1 − Dice coef-

ficient as part of the loss function. The Dice-based loss

function is defined as (4). Di represents the Dice coeffi-

cient of the endocardium and Do is the Dice coefficient

of the epicardium.

LD(yg, yp) = (1−Di(yg, yp)) + (1−Do(yg, yp)). (4)

Using the Dice-based loss function only to train

the model parameters may yield undesirable results, as

shown by the examples in Fig.2(b) and Fig.2(c). Ac-

cording to the cardiac anatomies, the predicted endo-

cardium is totally enclosed by the predicted epicardium,

as shown by the example in Fig.2(a). In Fig.2(b) and

Fig.2(c), the shaded areas enclosed by the predicted

endocardium stay outside of the outer contour, which

violates the cardiac anatomical structure. To figure it

out, we propose a new loss function, namely coverage

ratio, as defined by (5) and (6).

R(ypi, ypo) =
|ypi × (1− ypo)|

|ypi|
, (5)

where ypi : Ω 7→ {0, 1}w×h and ypo : Ω 7→ {0, 1}w×h

represent the segmentation of the endocardium and the

epicardium respectively. In (5), the numerator com-

putes the number of pixels simultaneously belonging to

the region enclosed by the predicted endocardium and

the region outside the predicted epicardium. And the

denominator calculates the total number of pixels of the

region surrounded by the endocardium. Thus, (5) cal-

culates the ratio of the endocardium pixels that locate

outside the epicardium. Based on (5), the proposed

coverage ratio loss function is defined as (6).

LR = eR(ypi,ypo). (6)

In conclusion, the total loss function of Seg-CapNet

is defined as shown in (7)

L = LD + LR, (7)

where LD and LR are defined as (4) and (6) respectively.

Predicted 

Endocardium 

Predicted Epicardium

Predicted 

Endocardium 

Predicted Epicardium

Predicted 

Endocardium 

Predicted Epicardium

(b)(a) (c)

Fig.2. Three typical spatial relationship between the predicted endocardium and epicardium. (a) The predicted endocardium is
completely surrounded by the predicted epicardium. (b) The predicted endocardium intersects with the predicted epicardium. (c) The
endocardium lies outside of the predicted epicardium.
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4 Experiments

The proposed model is implemented with Python

3.6 and TensorFlow on Nvidia Tesla K80 GPU with 10

G video memory, Intel e5-2650 CPU, and 10 G main

memory. The learning rate is set to 0.001.

4.1 Data Processing

To train and to validate the proposed model, ACDC

2017 [27] and SunnyBrook 1○ datasets are processed. In

cardiac MRI images, the heart generally locates near

the image center. Therefore, a region is cropped near

the image center. The size and the number of training

and testing images are shown in Table 1.

Table 1. Partition of Two Datasets

Dataset Size Number of Number of

Training Images Testing Images

ACDC 2017 128× 128 1 512 390

SunnyBrook 128× 128 135 147

4.2 Evaluation of Segmentation Results

In order to evaluate the performance of the model,

the average of the Dice coefficient and Hausdorff dis-

tance (HD) obtained from our model is calculated for

evaluation. The results of the two datasets are shown

in Table 2. The second column indicates the mean of

Dice and HD of the endocardium of the left ventricle.

The third column depicts the mean of Dice and HD of

the epicardium of the left ventricle.

Table 2. Results of Our Model in Terms of Dice and HD

Dataset Endocardium Epicardium

Dice HD Dice HD

ACDC 2017 0.927 5 3.231 6 0.943 9 2.909 8

SunnyBrook 0.897 5 8.941 9 0.907 0 7.369 9

4.3 Visual Segmentation Results

Fig.3 shows several cases of Seg-CapNet on the

ACDC 2017 and the SunnyBrook datasets. It is worth

noting that the testing images are randomly selected

from the two datasets.

5 Comparisons and Analysis

The Seg-CapNet model is compared with some

other FCN-based models including SegNet [11], U-

Net [14], CE-Net [16], Deeplabv3 [28], and U-Net++ [29] in

terms of model parameters, segmentation accuracy, ro-

bustness, and consistency to evaluate the performance

of Seg-CapNet. U-Net and SegNet are widely used

in image segmentation. Deeplabv3, CE-Net, and U-

Net++ are newly proposed FCN-based image segmen-

tation models and have shown their potential in medical

image segmentation.

5.1 Comparison on Model Parameters

The number of model parameters decides the speed

of generating the segmentation result. Thanks to its su-

perior feature extraction, Seg-CapNet has fewer para-

meters compared with other models, as shown in Ta-

ble 3.

From the topology of Seg-CapNet, it can be ob-

served that the main computation is consumed by the

dynamic routing algorithm which requires 4 194 304

parameters for training. One can reduce the feature

maps in the convolution layers such that fewer primary

capsules will be generated. In this way, the complexity

could be reduced.

To compare the real speed of obtaining a segmen-

tation, Seg-CapNet, U-Net, CE-Net, and SegNet are

tested in terms of the segmentation time. There are 390

and 147 testing images collected from ACDC and Sun-

nyBrook datasets respectively. The results are shown

in Fig.4. The average segmentation time of Seg-CapNet

is significantly reduced compared with the other mod-

els. It is worth noting that Seg-CapNet obtains the

predicted endocardium and epicardium within a single

test, while the other compared models require to test

twice.

5.2 Comparison on Segmentation Accuracy,

Robustness, and Consistency

Firstly, we compare Seg-CapNet with U-Net,

Deeplabv3, and SegNet on several images from Sun-

nyBrook and ACDC 2017 datasets, as shown in Fig.5.

It can be observed that Seg-CapNet has better segmen-

tation results on the whole.

Secondly, we use objective evaluation metrics, such

as Dice coefficient, Jaccard similarity coefficient (JSC),

HD, and average perpendicular distance (APD), to

compare Seg-CapNet with U-Net, Deeplabv3, CE-Net,

SegNet, and U-Net++. Table 4 and Table 5 depict

1○Radau P, Lu Y, Connelly K et al. Evaluation framework for algorithms segmenting short-axis cardiac MRI. http://hdl.handl-
e.net/10380/3070, Feb. 2021.
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Fig.3. Visual results of Seg-CapNet. (a) Results on images from the ACDC 2017 dataset. (b) Results on images from the SunnyBrook
dataset. The ground truth (in red) and predicted contours (in yellow) are simultaneously plotted on the test images.

the performance of the compared models on the above-

mentioned metrics. It can be observed that Seg-CapNet

outperforms the other models on these metrics. We also

use the box-plot of Dice coefficient to compare the accu-

racy and robustness of the compared models, as shown

in Fig.6. It can be seen that Seg-CapNet obtains a big-

ger average Dice value, indicating the accuracy of our

model. Moreover, the interval between the first quartile

and the third quartile is much smaller, which depicts

the robustness of Seg-CapNet.

Table 3. Comparison on Model Parameter Size

Model Parameter Size

Seg-CapNet 16 704 195

SegNet 29 440 901

U-Net 21 796 613

CE-Net 31 603 821

Deeplabv3 20 140 929

U-Net++ 27 842 179

0.083 2

0.040 8

0.084 7

0.022 9

0.106 4

0.062 1

0.112 6

0.036 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

SegNet

U-Net

CE-Net

Seg-CapNet

Average Time (s)

SunnyBrook ACDC2017

Fig.4. Comparison on time consumption.

Finally, we calculate end-systolic volume (ESV)

which is a clinical index of the left ventricle to fur-

ther illustrate the superiority of Seg-CapNet. Then we

compare the computed ESV with the golden standard

in terms of the Bland-Altman plot, as shown in Fig.7.

It can be concluded that Seg-CapNet obtains smaller

difference and deviation values, which indicates that

our model has a better consistency.
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Fig.5. Visual comparison among the compared models. (a) Results of Seg-CapNet. (b) Results of U-Net. (c) Results of SegNet. (d)
Results of Deeplab v3. It is worth noting that red contours represent the ground truth and yellow contours are the predicted results.

Table 4. Model Comparison on the ACDC 2017 Dataset

Model Endocardium Epicardium

Dice JSC HD APD Dice JSC HD APD

Seg-CapNet 0.927 5 0.124 9 3.231 6 0.899 3 0.943 9 0.093 7 2.909 8 0.980 7

U-Net 0.914 1 0.144 9 4.592 6 1.375 8 0.925 5 0.115 3 8.879 6 1.604 5

SegNet 0.844 2 0.232 1 9.290 8 2.568 7 0.886 7 0.171 9 9.877 8 2.378 6

Deeplabv3 0.890 5 0.177 9 5.764 6 1.492 9 0.918 3 0.131 7 6.391 5 1.749 5

CE-Net 0.917 4 0.187 7 7.051 6 1.669 3 0.920 6 0.138 2 6.815 7 1.954 0

U-Net++ 0.906 2 0.156 8 5.833 6 1.296 1 0.942 5 0.188 2 7.663 0 1.692 7

Note: The best result in each column is highlighted in bold.

Table 5. Model Comparison on the SunnyBrook Dataset

Model Endocardium Epicardium

Dice JSC HD APD Dice JSC HD APD

Seg-CapNet 0.897 5 0.158 2 8.941 9 2.094 8 0.907 0 0.146 9 7.369 9 2.061 5

U-Net 0.885 8 0.174 2 14.104 3 2.468 8 0.907 5 0.159 0 7.340 7 2.989 9

SegNet 0.798 8 0.312 2 13.281 7 4.251 4 0.794 2 0.316 7 12.915 8 5.247 5

Deeplabv3 0.849 9 0.239 7 17.172 1 3.746 6 0.873 0 0.209 2 13.017 3 2.546 1

CE-Net 0.878 2 0.250 8 16.969 2 4.011 6 0.894 7 0.216 6 14.714 1 3.210 3

U-Net++ 0.864 3 0.207 3 14.882 1 2.993 8 0.895 4 0.184 3 9.632 5 2.740 7

Note: The best result in each column is highlighted in bold.

6 Conclusions

In this paper, we proposed a capsule-based net-

work, namely Seg-CapNet, to simultaneously segment

multiple regions, more specifically, the endocardium

and the epicardium of the left ventricle from cardiac

MRI images. Seg-CapNet transforms the endocardium

and the epicardium into two vectors representing the

object entity information so as to achieve the para-

llel segmentation through up-sampling. We proposed

a new loss function that imposes a constraint on the

predicted masks to follow cardiac morphological know-

ledge. Compared with state-of-the-art, Seg-CapNet

could not only extract the endocardium and the epi-
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cardium of the left ventricle simultaneously but also

perform better in terms of Dice and HD on ACDC 2017

and Sunnybrook datasets. Besides, Seg-CapNet only

requires about half the quantity of parameters to be

trained, which can also save computation cost during

testing. The proposed segmentation framework can be

easily extended to segment more regions by adding cap-

sule vectors and deconvolutional layers. Future work

will focus on the improvement of dynamic routing which

consumes a large portion of computation in the capsule

neural network.

References

[1] Cootes T F, Taylor C J, Cooper D H et al. Active shape

models—Their training and application. Computer Vi-

sion and Image Understanding, 1995, 61(1): 38-59. DOI:

10.1006/cviu.1995.1004.

[2] Soliman A, Khalifa F, Elnakib A et al. Accurate

lungs segmentation on CT chest images by adap-

tive appearance-guided shape modeling. IEEE Transac-

tions on Medical Imaging, 2016, 36(1): 263-276. DOI:

10.1109/TMI.2016.2606370.

[3] Cootes T F, Edwards G J, Taylor C J. Active ap-

pearance models. IEEE Transactions on Pattern Ana-

lysis & Machine Intelligence, 2001, 23(6): 681-685. DOI:

10.1109/34.927467.

[4] Matthews l, Baker S. Active appearance models revisited.

International Journal of Computer Vision, 2004, 60: 135-

164. DOI: 10.1023/B:VISI.0000029666.37597.d3

[5] Wachinger C, Fritscher K, Sharp G et al. Contour-

driven atlas-based segmentation. IEEE Transactions

on Medical Imaging, 2015, 34(12): 2492-2505. DOI:

10.1109/TMI.2015.2442753.

[6] Maintz J B, Viergever M A. A survey of medical image reg-

istration. Medical Image Analysis, 1998, 2(1): 1-36. DOI:

10.1016/S1361-8415(01)80026-8.

[7] Litjens G, Kooi T, Bejnordi B E et al. A survey on deep

learning in medical image analysis. Medical Image Analysis,

2017, 42: 60-88. DOI: 10.1016/j.media.2017.07.005.

[8] LeCun Y, Bengio Y, Hinton G E. Deep learning. Nature,

2015, 521(7553): 436-444. DOI: 10.1038/nature14539.

[9] Krizhevsky A, Sutskever I, Hinton G E. ImageNet clas-

sification with deep convolutional neural networks. In

Proc. the 26th Int. Conference on Neural Information

Processing Systems, December 2012, pp.1097-1105. DOI:

10.5555/2999134.2999257.

[10] Badrinarayanan V, Handa V, Cipolla R. SegNet: A

deep convolutional encoder-decoder architecture for ro-

bust semantic pixel-wise labelling. arXiv:1505.07293, 2015.

https://arxiv.org/pdf/1505.07293.pdf, March, 2020.

[11] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A

deep convolutional encoder-decoder architecture for im-

age segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2017, 39(12): 2481-2495. DOI:

10.1109/TPAMI.2016.2644615.

[12] Noh H, Hong S, Han B. Learning deconvolution network

for semantic segmentation. In Proc. the 2015 IEEE Inter-

national Conference on Computer Vision, December 2015,

pp.1520-1528. DOI: 10.1109/ICCV.2015.178.

[13] Long J, Shelhamer E, Darrell T. Fully convolutional

networks for semantic segmentation. In Proc. the 2015

IEEE International Conference on Computer Vision and

Pattern Recognition, June 2015, pp.3431-3440. DOI:

10.1109/CVPR.2015.7298965.

[14] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional

networks for biomedical image segmentation. In Proc. the

18th International Conference on Medical Image Comput-

ing and Computer-Assisted Intervention, October 2015,

pp.234-241. DOI: 10.1007/978-3-319-24574-4 28.

[15] Gu Z W, Cheng J, Fu H Z et al. CE-Net: Context encoder

network for 2D medical image segmentation. IEEE Trans-

actions on Medical Imaging, 2019, 38(10): 2281-2292. DOI:

10.1109/TMI.2019.2903562.

[16] Wang G, Liu X, Li C et al. A noise-robust framework for

automatic segmentation of COVID-19 pneumonia lesions

from CT images. IEEE Transactions on Medical Imaging,

2020, 39(8): 2653-2663. DOI: 10.1109/TMI.2020.3000314.

[17] Hu X, Li F, Samaras D et al. Topology-preserving deep

image segmentation. In Proc. the 33rd Annual Conference

of Neural Information Processing Systems, December 2019,

pp.5658-5669.

[18] Karimi D, Salcudean S E. Reducing the Hausdorff Distance

in medical image segmentation with convolutional neural

networks. IEEE Transactions on Medical Imaging, 2020,

39(2): 499-513. DOI: 10.1109/TMI.2019.2930068.
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