Skip to main content

Advertisement

Log in

Predicting CircRNA-Disease Associations Based on Improved Weighted Biased Meta-Structure

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are RNAs with a special closed loop structure, which play important roles in tumors and other diseases. Due to the time consumption of biological experiments, computational methods for predicting associations between circRNAs and diseases become a better choice. Taking the limited number of verified circRNA-disease associations into account, we propose a method named CDWBMS, which integrates a small number of verified circRNA-disease associations with a plenty of circRNA information to discover the novel circRNA-disease associations. CDWBMS adopts an improved weighted biased meta-structure search algorithm on a heterogeneous network to predict associations between circRNAs and diseases. In terms of leave-one-out-cross-validation (LOOCV), 10-fold cross-validation and 5-fold cross-validation, CDWBMS yields the area under the receiver operating characteristic curve (AUC) values of 0.921 6, 0.917 2 and 0.900 5, respectively. Furthermore, case studies show that CDWBMS can predict unknow circRNA-disease associations. In conclusion, CDWBMS is an effective method for exploring disease-related circRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kristensen L S, Andersen M S, Stagsted L V W, Ebbesen K K, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(7): 675-691. https://doi.org/10.1038/s41576-019-0158-7.

    Article  Google Scholar 

  2. Wilusz J E. A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA, 2018, 9(4): Article No. e1478. https://doi.org/10.1002/wrna.1478.

  3. Sanger H L, Klotz G, Riesner D, Gross H J, Kleinschmidt A K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl. Acad. Sci. USA, 1976, 73(11): 3852-3856. https://doi.org/10.1073/pnas.73.11.3852.

    Article  Google Scholar 

  4. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell, 1993, 73(5): 1019-1030. https://doi.org/10.1016/0092-8674(93)90279-Y.

    Article  Google Scholar 

  5. Cocquerelle C, Daubersies P, Majérus M A, Kerckaert J P, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J., 1992, 11(3): 1095-1098. https://doi.org/10.1002/j.1460-2075.1992.tb05148.x.

    Article  Google Scholar 

  6. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Missplicing yields circular RNA molecules. FASEB J., 1993, 7(1): 155-160. https://doi.org/10.1096/fasebj.7.1.7678559.

  7. Nigro J M, Cho K R, Fearon E R, Kern S E, Ruppert J M, Oliner J D, Kinzler K W, Vogelstein B. Scrambled exons. Cell, 1991, 64(3): 607-613. https://doi.org/10.1016/0092-8674(91)90244-S.

    Article  Google Scholar 

  8. Hansen T B, Jensen T I, Clausen B H, Bramsen J B, Finsen B, Damgaard C K, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388. https://doi.org/10.1038/nature11993.

    Article  Google Scholar 

  9. Memczak S, Jens M, Elefsinioti A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338. https://doi.org/10.1038/nature11928.

    Article  Google Scholar 

  10. Enuka Y, Lauriola M, Feldman M E, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res., 2016, 44(3): 1370-1383. https://doi.org/10.1093/nar/gkv1367.

    Article  Google Scholar 

  11. Pamudurti N R, Bartok O, Jens M et al. Translation of CircRNAs. Mol. Cell, 2017, 66(1): 9-21. https://doi.org/10.1016/j.molcel.2017.02.021.

    Article  Google Scholar 

  12. Maass P G, Glažar P, Memczak S et al. A map of human circular RNAs in clinically relevant tissues. J. Mol. Med., 2017, 95(11): 1179-1189. https://doi.org/10.1007/s00109-017-1582-9.

    Article  Google Scholar 

  13. Aufiero S, Van Den Hoogenhof M M G, Reckman Y J et al. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA, 2018, 24(6): 815-827. https://doi.org/10.1261/rna.064394.117.

    Article  Google Scholar 

  14. Rybak-Wolf A, Stottmeister C, Glažar P et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5): 870-885. https://doi.org/10.1016/j.molcel.2015.03.027.

    Article  Google Scholar 

  15. Li Z, Huang C, Bao C et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3): 256-264. https://doi.org/10.1038/nsmb.2959.

    Article  Google Scholar 

  16. Lux S, Bullinger L. Circular RNAs in cancer. Adv. Exp. Med. Biol., 2018, 1087: 215-230. https://doi.org/10.1007/978-981-13-1426-1_17.

    Article  Google Scholar 

  17. Liu J, Li D, Luo H, Zhu X. Circular RNAs: The star molecules in cancer. Mol. Aspects. Med., 2019, 70: 141-152. https://doi.org/10.1016/j.mam.2019.10.006.

    Article  Google Scholar 

  18. Smid M, Wilting S M, Uhr K et al. The circular RNome of primary breast cancer. Genome Res., 2019, 29(3): 356-366. https://doi.org/10.1101/gr.238121.118.

    Article  Google Scholar 

  19. Liu H, Bi J, Dong W, Yang M, Shi J, Jiang N, Lin T, Huang J. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer, 2018, 17(1): Article No. 161. https://doi.org/10.1186/s12943-018-0908-8.

  20. Xia Q, Ding T, Zhang G, Li Z, Zeng L, Zhu Y, Guo J, Hou J, Zhu T, Zheng J, Wang J. Circular RNA expression profiling identifies prostate cancer-specific circRNAs in prostate cancer. Cell Physiol. Biochem., 2018, 50(5): 1903-1915. https://doi.org/10.1159/000494870.

    Article  Google Scholar 

  21. Fan C, Lei X, Fang Z, Jiang Q, Wu F X. CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database (Oxford), 2018, 2018: Article No. bay044. https://doi.org/10.1093/database/bay044.

  22. Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, Cheng H, Yan J, Zhang S, Yang P, Zhao F. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep., 2019, 26(12): 3444-3460. https://doi.org/10.1016/j.celrep.2019.02.078.

    Article  Google Scholar 

  23. Yao D, Zhang L, Zheng M, Sun X, Lu Y. Circ2Disease: A manually curated database of experimentally validated circRNAs in human disease. 2018, 8(1): Article No. 11018. https://doi.org/10.1038/s41598-018-29360-3.

  24. Zhao Z, Wang K, Wu F, Wang W, Zhang K, Hu H, Liu Y, Jiang T. circRNA disease: A manually curated database of experimentally supported circRNA-disease associations. Cell Death and Disease, 2018, 9(5): Article No. 475. https://doi.org/10.1038/s41419-018-0503-3.

  25. Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits. Front. Genet., 2013, 4: Article No. 283. https://doi.org/10.3389/fgene.2013.00283.

  26. Lan W, Wang J, Li M, Liu J, Wu F X, Pan Y. Predicting microRNA-disease associations based on improved microRNA and disease similarities. IEEE/ACM Trans. Comput. Biol. Bioinform., 2018, 15(6): 1774-1782. https://doi.org/10.1109/TCBB.2016.2586190.

    Article  Google Scholar 

  27. Lan W, Li M, Zhao K, Liu J, Wu F X, Pan Y, Wang J. LDAP: A web server for lncRNA-disease association prediction. Bioinformatics, 2017, 33(3): 458-460. https://doi.org/10.1093/bioinformatics/btw639.

    Article  Google Scholar 

  28. Yan C, Wang J, Ni P, Lan W, Wu F X, Pan Y. DNRLMF-MDA: Predicting microRNA-disease associations based on similarities of microRNAs and diseases. IEEE/ACM Trans. Comput. Biol. Bioinform., 2019, 16(1): 233-243. https://doi.org/10.1109/TCBB.2017.2776101.

    Article  Google Scholar 

  29. Peng W, Lan W, Yu Z, Wang J, Pan Y. A framework for integrating multiple biological networks to predict microRNA-disease associations. IEEE Trans. Nano Bioscience, 2017, 16(2): 100-107. https://doi.org/10.1109/TNB.2016.2633276.

    Article  Google Scholar 

  30. Wu L, Li M, Wang J X, Wu F X. Controllability and its applications to biological networks. Journal of Computer Science and Technology, 2019, 34(1): 16-34. https://doi.org/10.1007/s11390-019-1896-x.

    Article  MathSciNet  Google Scholar 

  31. Fang Z, Lei X. Prediction of miRNA-circRNA associations based on k-NN multi-label with random walk restart on a heterogeneous network. Big Data Mining and Analytics, 2019, 2(4): 261-272. https://doi.org/10.26599/BDMA.2019.9020010.

  32. Fan C, Lei X, Wu F X. Prediction of CircRNA-disease associations using KATZ model based on heterogeneous networks. Int. J. Biol. Sci., 2018, 14(14): 1950-1959. https://doi.org/10.7150/ijbs.28260.

    Article  Google Scholar 

  33. Lei X, Fang Z, Chen L, Wu F X. PWCDA: Path weighted method for predicting circRNA-disease associations. Int. J. Mol. Sci., 2018, 19(11): Article No. 3410. https://doi.org/10.3390/ijms19113410.

  34. Yan C, Wang J, Wu F X. DWNN-RLS: Regularized least squares method for predicting circRNA-disease associations. BMC Bioinformatics, 2018, 19(Suppl 19): Article No. 520. https://doi.org/10.1186/s12859-018-2522-6.

  35. Wei H, Liu B. iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization. Brief Bioinform., 2019, 21(4): 1356-1367. https://doi.org/10.1093/bib/bbz057.

    Article  Google Scholar 

  36. Zhang W, Yu C, Wang X, Liu F. Predicting circRNA-disease associations through linear neighborhood label propagation method. IEEE Access, 2019, 7: 83474-83483. https://doi.org/10.1109/ACCESS.2019.2920942.

    Article  Google Scholar 

  37. Lei X, Zhang W. BRWSP: Predicting circRNA-disease associations based on biased random walk to search paths on a multiple heterogeneous network. Complexity, 2019, 2019: Article No. 5938035. https://doi.org/10.1155/2019/5938035.

  38. Wang Y, Nie C, Zang T, Wang Y. Predicting circRNA-disease associations based on circRNA expression similarity and functional similarity. Frontiers in Genetics, 2019, 10: Article No. 832. https://doi.org/10.3389/fgene.2019.00832.

  39. Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, Zheng Q, Li Y, Wang P, He X, Huang S. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res., 2018, 46(D1): D106-D112. https://doi.org/10.1093/nar/gkx891.

  40. Glažar P, Papavasileiou P, Rajewsky N. circBase: A database for circular RNAs. RNA, 2014, 20(11): 1666-1670. https://doi.org/10.1261/rna.043687.113.

    Article  Google Scholar 

  41. Muppirala U K, Honavar V G, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC Bioinformatics, 2011, 12(1): Article No. 489. https://doi.org/10.1186/1471-2105-12-489.

  42. Van Laarhoven T, Nabuurs S B, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 2011, 27(21): 3036-3043. https://doi.org/10.1093/bioinformatics/btr500.

    Article  Google Scholar 

  43. Wang D, Wang J, Lu M, Song F, Cui Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics, 2010, 26(13): 1644-1650. https://doi.org/10.1093/bioinformatics/btq241.

    Article  Google Scholar 

  44. Huang Z, Zheng Y, Cheng R, Sun Y, Mamoulis N, Li X. Meta structure: Computing relevance in large heterogeneous information networks. In Proc. the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2016, pp.1595-1604. https://doi.org/10.1145/2939672.2939815.

  45. Zhao H, Yao Q, Li J, Song Y, Lee D L. Meta-graph based recommendation fusion over heterogeneous information networks. In Proc. the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2017, pp.635-644. https://doi.org/10.1145/3097983.3098063.

  46. Long Y, Luo J. WMGHMDA: A novel weighted metagraph-based model for predicting human microbe-disease association on heterogeneous information network. BMC Bioinformatics, 2019, 20(1): Article No. 541. https://doi.org/10.1186/s12859-019-3066-0.

  47. Lei X, Tie J. Prediction of disease-related metabolites using bi-random walks. PLoS ONE, 2019, 14(11): Article No. e0225380. https://doi.org/10.1371/journal.pone.0225380.

  48. Jiang Y, Liu B, Yu L, Yan C, Bian H. Predict MiRNA-disease association with collaborative filtering. Neuroinformatics, 2018, 16(3): 363-372. https://doi.org/10.1007/s12021-018-9386-9.

    Article  Google Scholar 

  49. Necula L, Matei L, Dragu D, Neagu A I, Mambet C, Nedeianu S, Bleotu C, Diaconu C C, Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J. Gastroenterol, 2019, 25(17): 2029-2044. https://doi.org/10.3748/wjg.v25.i17.2029.

    Article  Google Scholar 

  50. Weitz J, Koch M, Debus J, Höhler T, Galle P R, Büchler M W. Colorectal cancer. Lancet, 2005, 365(9454): 153-165. https://doi.org/10.1016/S0140-6736(05)17706-X.

  51. Sun Y S, Zhao Z, Yang Z N, Xu F, Lu H J, Zhu Z Y, Shi W, Jiang J, Yao P P, Zhu H P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11): 1387-1397. https://doi.org/10.7150/ijbs.21635.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Pan.

Supplementary Information

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, XJ., Bian, C. & Pan, Y. Predicting CircRNA-Disease Associations Based on Improved Weighted Biased Meta-Structure. J. Comput. Sci. Technol. 36, 288–298 (2021). https://doi.org/10.1007/s11390-021-0798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-021-0798-x

Keywords

Navigation