
Zhu JF, Hao ZK, Liu Q et al. Towards exploring large molecular space: An efficient chemical genetic algorithm. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 37(6): 1464–1477 Nov. 2022. DOI 10.1007/s11390-021-0970-3

Towards Exploring Large Molecular Space: An Efficient Chemical
Genetic Algorithm

Jian-Fu Zhu (), Zhong-Kai Hao (), Qi Liu∗ ( ), Member, CCF, Yu Yin ( )
Cheng-Qiang Lu (), Zhen-Ya Huang (), and
En-Hong Chen (), Fellow, CCF, Senior Member, IEEE

Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer Science and Technology
University of Science and Technology of China, Hefei 230026, China

E-mail: {jeffzhu, hzk171805}@mail.ustc.edu.cn; qiliuql@ustc.edu.cn; {yxonic, lunar}@mail.ustc.edu.cn
E-mail: {huangzhy, cheneh}@ustc.edu.cn

Received September 13, 2020; accepted April 20, 2021.

Abstract Generating molecules with desired properties is an important task in chemistry and pharmacy. An efficient

method may have a positive impact on finding drugs to treat diseases like COVID-19. Data mining and artificial intelligence

may be good ways to find an efficient method. Recently, both the generative models based on deep learning and the work

based on genetic algorithms have made some progress in generating molecules and optimizing the molecule’s properties.

However, existing methods need to be improved in efficiency and performance. To solve these problems, we propose a

method named the Chemical Genetic Algorithm for Large Molecular Space (CALM). Specifically, CALM employs a scalable

and efficient molecular representation called molecular matrix. Then, we design corresponding crossover, mutation, and

mask operators inspired by domain knowledge and previous studies. We apply our genetic algorithm to several tasks related

to molecular property optimization and constraint molecular optimization. The results of these tasks show that our approach

outperforms the other state-of-the-art deep learning and genetic algorithm methods, where the z tests performed on the

results of several experiments show that our method is more than 99% likely to be significant. At the same time, based

on the experimental results, we point out the insufficiency in the experimental evaluation standard which affects the fair

evaluation of previous work.

Keywords data mining, molecular generation, genetic algorithm, drug discovery, artificial intelligence

1 Introduction

Drug discovery is one of the most important tasks

in the personalized health and the biochemical indus-

try. Indeed, with the improvement of living standards,

people’s demand for new drugs will continue to grow [1].

For example, the drug design plays an important role

in treating diseases like COVID-19 and improving peo-

ple’s medical level. The first step for the drug design is

to generate candidates in the drug-like molecular space.

Historically, a traditional paradigm for molecular

generation involves four steps [2]: 1) generating or im-

proving a new material concept; 2) synthesizing the

material; 3) incorporating the material into a device

or system; 4) measuring the desired property. This cy-

cle repeats and improves future discoveries. However,

this paradigm needs much expertise and human labor,

which costs several years for each step. Therefore, in

order to accelerate this paradigm, automatic molecular

generation is necessary.

Recently, with the development of data mining and

artificial intelligence, given the application of data min-

ing in other fields [3–8], some researchers have attempted

to leverage many machine learning methods for molec-

Regular Paper

This work was partially supported by the National Key Research and Development Program of China under Grant
No. 2016YFB1000904, the National Natural Science Foundation of China under Grant Nos. 61922073 and U20A20229, and the Youth
Innovation Promotion Association of Chinese Academy of Sciences under Grant No. 2014299.

The code of this paper is public available at https://github.com/bigdata-ustc/calm, Mar. 2021.
∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-021-0970-3

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1465

ular generation and have made some progress [9–13].

However, due to the complex structure and the large

molecular space, the above work did not involve the is-

sue of large molecules. As a matter of fact, there are

still many technical and domain challenges for molecu-

lar generation. We can summarize the following points.

Firstly, some possible molecules in a huge molecular

space may contain many atoms and complex struc-

tures (e.g., the mol1 in Fig.1 has the higher property

score), which should also conform the prior chemistry

knowledge. As the complexity increases, the process

of molecular generation becomes harder. Secondly,

the whole drug-like molecular space contains 1023–1060

molecules [14]. Therefore, it is important to generate

molecules that can span the whole space. Additionally,

this space is not smoothing, where a little change in the

molecular structure may result in many differences in

the property (e.g., mol2 and mol3 in Fig.1 are similar,

while their property scores are much different). Thirdly,

the generated molecules should not be affected by ex-

isting molecules in the dataset. There may be more

valuable molecules in the unknown space. Hence, the

model should be able to explore the molecular space

outside the dataset.

To address the inherent challenges and difficulties

mentioned above, in this paper, we propose a chemical

genetic algorithm for large molecular space (CALM)

for molecular generation. Firstly, we propose a molec-

ular representation named molecular matrix, which is

scalable for the molecular size. Furthermore, in or-

der to make the generated molecules conform the laws

of chemistry, we design the chemical constraint mask

which guarantees the validity of generated molecules

even in complex environments. These components pave

the way for exploring the large molecular space. Sec-

ondly, to deal with the large and non-smoothing molec-

ular space, we design the crossover and the mutation

operators respectively. The former can generate off-

spring molecules that could span the large molecular

space. The latter can make a little change to the current

molecule, which is suitable for local molecular space

exploration. Thirdly, we combine the above compo-

nents into a genetic algorithm framework and verify

that CALM can generate many differences from the ex-

isting dataset. The extensive experiments prove that

CALM can deal with large molecules and outperform

other baselines in molecular generation tasks.

2 Related Work

The related work can be divided into four classes:

traditional work, graph generation, deep learning mod-

els for molecule generation, and the work based on the

genetic algorithm.

2.1 Traditional Work

The number of drug-like molecules is estimated to

be very large [14]. Traditional chemical methods, like

high throughput screening (HTS) [15] and high through-

put virtual screening (HTVS) [16], narrow the feasible

mol1

mol2 mol3

ID

mol1

mol2

mol3

Property Score

0.948

0.863

0.653

Fig.1. Complex molecular space.

1466 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

space. These methods have made larger parts of the

chemical space accessible to the computational and ex-

perimental study. However, these new methods still

waste supercomputer and laboratory resources. There-

fore, minimizing the number of bad leads generated at

the start of the pipeline remains a key priority. In Sub-

sections 2.2–2.4, we will introduce the emerging work

based on data mining and artificial intelligence. First,

we consider the work about graph generation based on

GANs [17] and VAEs [18]. Second, we discuss the deep

generative work which is deeply influenced by graph

generation. Third, we introduce the work based on ge-

netic algorithms.

2.2 Graph Generation

In somewhat, molecular generation can be viewed

as a special case of graph generation. Therefore, it is

necessary to introduce the concept of graph generation.

The non-Euclid data, i.e., graph data, has its own char-

acteristics. With the great progress in image and text

fields made by GANs and VAEs, some work starts ex-

ploring the graph generative network, such as [19–21].

However, the above work is limited from learning the

single graph or small molecules. In order to adapt to

a more complex environment, some researchers provide

some other technical perspectives. For example, based

on RNN fashion, GraphRNN [22] and GRAN [23] gene-

rate a graph serially, where the information of nodes

and edges in a graph affects the output of the RNN.

The above studies achieve obviously great performance

for some complex datasets.

Overall, the graph generation has great prospects,

which has emerged as a new method for some applica-

tions, such as recommendation, privacy protection and

NP-complete problem [24]. Of course, molecular gene-

ration is one of them.

2.3 Deep Learning Models for Molecule
Generation

This field can be traced back to the molecular

autoencoder “CVAE” [25] that employs the SMILES

string [26] as data representation and first addresses the

generative model for the molecular generation. Since

then, other deep learning based work has been greatly

improved on this basis. NeVAE [27] first achieves 100%

validity of generated molecules through adding a mask

to the process of decoding. Junction Tree Varia-

tional Autoencoder (JT-VAE [28]) builds a hierarchi-

cal process to capture the molecular information by

using the tree and graph representation. The con-

strained graph convolutional policy network [12] pro-

vides a novel perspective on molecular generation,

which views the generation process as a Markov de-

cision process and combines the graph operation and

reinforcement learning [29] perfectly. ALL-SMILES [30]

encodes multiple SMILES strings of a single molecule

using a set of stacked recurrent neural networks, achiev-

ing a promising result. However, deep learning meth-

ods tend to learn the distribution underlying the given

dataset, which could ignore the valuable molecules out-

side the dataset.

2.4 Genetic Algorithm for Molecular Design

As for ChemGE [31], it uses the SMILES string as

the discrete code of a molecule, which is based on

an evolutionary algorithm. Though it does provide a

new perspective for molecular generation and achieves

relatively good performance compared with some deep

learning work, its way of encoding, SMILES string,

and corresponding operations for SMILES string limit

the power of the genetic algorithm. Then GB-GA [32]

emerges as an efficient method to explore the molec-

ular space based on prior chemical knowledge. But

molecules generated by GB-GA tend to match a tem-

plate, which means that GB-GA ignores much molecu-

lar space. Finally, GA+D [33] augments the genetic al-

gorithm with the deep neural network, which achieves

a competitive performance.

3 Proposed Method

In this section, we first give a formal definition of

the problem. Second, we introduce the framework of

a basic genetic algorithm [34]. Third, detailed descrip-

tions for the components in CALM as shown in Fig.2

are provided. Finally, we present the full CALM algo-

rithm incorporating each component.

3.1 Problem Definition

We consider that each molecule can be represented

by an undirected graph M with a set of edges E and

nodes V. In the setting of the molecular space, each

atom corresponds to a node vi ∈ V associated with an

integer indicating the atom type. We further represent

each chemical bond as an edge (vi, vj) ∈ E associated

with a bond type yi,j ∈ {1, 2, ..., Y }. We also view the

whole molecular space as a set S containing all possible

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1467

Computer Software

Selection Evaluation

Crossover

Mask

Mask

Mask Mutation

Offspring

Molecular

Matrix

Molecular

Matrix
Population

Dataset

Molecular

Matrix

[0.948, 0.945, ..., 0.698]

g

g/

g < Tg⇁

g T

®

<-

Fig.2. Framework of CALM. C: carbon; N: nitrogen; O: oxygen.

molecules. And there are lots of quantitative proper-

ties for molecules, such as penalized logP (partition co-

efficient), QED (quantitative estimate of druglikeness),

which can be denoted as a set P. We view an arbitrary

property p ∈ P as a function which maps a molecule

M ∈ S to a real number, where p : S → R. Given a

function p, we want to find molecules with the highest

value of function p. Thus, our target is to find a set

of molecules Sp = {M1,M2, ...MNp}, where Sp ⊂ S,

with the highest value of property p.

We adopt a genetic algorithm framework for this

problem and propose CALM.

3.2 Overall Framework

The core component of a genetic algorithm is the

population P which can be viewed as a set containing

a certain number Np of solutions to a specific problem,

where each solution is encoded into a solution repre-

sentation called gene. A typical procedure of a genetic

algorithm is to modify the population iteratively for

many generations. The population containing Np solu-

tions can be defined as follows:

Pg = {X 1,g,X 2,g, ...,XNp,g},

where X i,g represents the i-th solution in population

for generation g and g is a natural number.

The basic genetic algorithm runs three steps to up-

date the population iteratively until we are satisfied

with the final population. First, at generation g, we

generate new solutions to explore the solution space.

Generally, there are two ways to produce new solu-

tions: crossover and mutation. For crossover, a ge-

netic algorithm randomly selects a pair of genes from

Pg and combines them to produce an offspring solu-

tion. For mutation, a genetic algorithm modifies one of

genes in Pg to generate an offspring solution. Second,

after crossover and mutation, the algorithm will get a

certain number Nnew of new solutions. Now, there is

a set of solutions Pg
′ containing all new solutions and

the remaining solutions in the population Pg. We as-

sign an adaptive value to each solution through a fitness

function in the population Pg to estimate the quality

of solutions. Third, a genetic algorithm will select Np

solutions in Pg
′ to form the population Pg+1.

To adopt the genetic algorithm framework for our

problem, we resolve these three main concerns. First,

we design a new encoding method called molecular

matrix specifically for molecules, which preserves the

whole information of the molecular structure. Second,

we propose matrix crossover and matrix mutation for

producing offspring molecules based on molecular ma-

trix. Third, we design a chemical constraint mask that

can guarantee the validity of generated molecules.

3.3 Components of CALM

In this subsection, we will introduce the following

points. First, we give descriptions for a new molecular

representation called molecular matrix and its corre-

1468 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

sponding mask named chemical constraint mask. Sec-

ond, we introduce population initialization. Third, we

present the crossover and mutation operations for off-

spring generation. Finally, we describe evaluation and

selection in CALM.

3.3.1 Molecular Representation

Traditionally, the molecules are represented as

SMILES strings, which is widely used in previous

work [25, 31,32]. However, the relationship between

atoms and chemical bonds is not described in detail

in a SMILES string. Therefore, invalid molecules are

often generated after crossover and mutation operators.

What is more, small changes in a molecule may corre-

spond to many differences in its corresponding SMILES

string, which can lead to difficulties in molecule gene-

ration.

The proposed solution of encoding molecules can be

described as follows, which is very similar to adjacent

matrix. Given a specified molecule M with N atoms,

we can produce the molecular matrix A as follows. We

assign fi to diagonal element Aii, which indicates the

type of the atom vi. And yi,j is assigned to Aij , where

i 6= j, which indicates the type of the chemical bond.

We build an N×N matrix A with zero initializer, then

for each element Aij in matrix A:

Aij =

{
fi, if i = j,
yi,j , otherwise.

For example, as shown in Fig.3, the type of atom v1
is nitrogen, where the value of A11 is 7, which is consis-

tent with the position in the periodic table of elements.

By analogy, the value of A22 is 6, which indicates the

type of atom v2 is carbon.

7 2

2 6 1 2

1 6 2

2 6 1

1 6 2

2 6 1

2 1 6

N 2

C 5

C 3

C 3

C 3

C 3

C 3

3

46

7

2

5

N1
1

0

1

1

1

1

1

A V↼A↽

Fig.3. Molecular matrix and chemical constraint mask.

3.3.2 Chemical Constraint Mask

In order to avoid the invalid generated molecules

and deal with complex molecular environments, in-

spired by previous work [35], we design the chemical con-

straint mask to make the molecules conform the law of

prior chemistry knowledge. Given a specified molecular

matrix A, we can get an indicator vector where the i-th

component of the vector corresponds to atom vi and the

value of element indicates whether atom vi can connect

to any other atoms. The i-th component of this vector

can be defined as follows:

Vi(A) = I(h(Aii)−
n∑

j=1

Aij), if i 6= j.

I(x) is an indicator function, which is defined as

follows:

I(x) =

{
0, if x 6 0,
1, otherwise.

Function h determines the maximum valence given

a specified atom type. The sum of the i-th row ex-

cept the diagonal element indicates the total valence

of atom vi. The difference between these two terms

indicates whether atom vi is saturated or not. For ex-

ample, as shown in Fig.3, A22 is 6, which indicates that

the type of atom v2 is carbon. Based on the prior know-

ledge of chemistry, the maximum valence of carbon is

4. However, the sum of the remaining elements in row

2 indicates atom v2 has five valences. Therefore, the

value of V2(M) is 0, which indicates that atom v2 is

saturated. By analogy, atom v1 is unsaturated, which

indicates that atom v1 can connect to the other atoms.

3.3.3 Population Initialization

With molecular matrix representation and chemical

constraint mask, we can now present a full description

of CALM. To start with, CALM should initialize the

population P0 with randomly selected molecules from

a specified dataset, where the dataset provides some

information of the chemical space. A dataset can be

viewed as a subset of the whole molecular space S,

which is denoted as Ssub. Then this process can be

formulated as:

P0 ← {M1,0,M2,0, ...,MNp,0},

where M1,0,M2,0, ...,MNp,0 are all randomly selected

from Ssub.

3.3.4 Matrix Crossover

Matrix crossover is an operator that creates new

molecules to explore the chemical space. It receives a

pair of molecules from the current population and out-

puts a new molecule. There are two suboperators of

matrix crossover called substructure operator and com-

bination operator.

We first introduce the substructure operator de-

noted as Obfs, which receives a molecule M with N

atoms as input and outputs a substructure matrix. We

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1469

should first determine the width w which decides the

size of the substructure, where w is sampled from an

arbitrary distribution related to N . Then we randomly

select an atom in the molecule as the starting node. We

take the Breadth-First Search (BFS) algorithm from

the starting node to select w atoms in the molecule. Fi-

nally, we output the substructure in the molecule which

is represented as a molecular matrix A′. This process

is described in Algorithm 1.

Algorithm 1. Substructure Operator Obfs

Input: a specified molecular matrix A with N atoms
Output: a substructure matrix of molecule which is
denoted as A′

1: Randomly select an atom vs as the starting atom

2: Width w sampled from an arbitrary distribution related to

N

3: Initialize a queue Q and a list L

4: Q.push(s), L.append(s)

5: for i = 1 → w:

6: x ← Q.pop(), L.append(x)

7: for j = 1 → N :

8: if Axj 6= 0 and j /∈ L:

9: Q.push(j)

10: end

11: end

12: end

13: Initialize a w × w matrix A′ with a zero initializer

14: for i = 1 → w:

15: for j = 1 → w:

16: Aij
′ ← AL[i]L[j]

17: end

18: end

19: return A′

Then we introduce the combination operator de-

noted as Ocom. At generation g, CALM first randomly

selects a pair of parent molecules from Pg. We can

get two substructures by using Obfs. Then combina-

tion operator Ocom combines these two substructures

into a new offspring molecular matrix. Additionally, we

should keep the connectivity of these two substructures.

The connecting process is performed by establishing a

single bond between two atoms, where each atom is ran-

domly selected from a different substructure. However,

the connecting process can be invalid if one of the ran-

domly selected atoms is saturated for valence. There-

fore, we apply the chemical constraint mask to select

the unsaturated atoms to avoid the invalid generated

molecules. The detail of the combination operator is

described in Algorithm 2.

Given two molecular matrices A1,A2, the matrix

crossover can be defined as follows:

A1
sub,A

2
sub ← Obfs(A

1), Obfs(A
2),

Anew ← Ocom(A1
sub,A

2
sub).

Algorithm 2. Combining Two Substructures Ocom

Input: two substructures A1, A2 with N1, N2 atoms
respectively
Output: a molecular matrix A′ corresponding to a new
molecule

1: Determine m,n, where Vm(A1) = 1, Vn(A2) = 1
2: Build an (N1 +N2)× (N1 +N2) matrix A′ with zero

initializer
3: for i = 1 → N1:
4: for j = 1 → N1:
5: A′ij ← A1

ij

6: end
7: end
8: for i = 1 → N2:
9: for j = 1 → N2:

10: A′i+N1,j+N1 ← A2
ij

11: end
12: end
13: A′m,n+N1 ← 1

14: A′n+N1,m ← 1

15: return A′

For convenience, we denote matrix crossover as Ocro.

However, in some cases, drastically structural diffe-

rences are not sufficient. We should explore the local

space of a molecule.

3.3.5 Matrix Mutation

In order to change the molecular structure directly,

we design the matrix mutation. We first introduce

the intuition underlying this operation. As shown in

Fig.4, the structure of the two molecules is almost the

same, while the green dotted line identifies the different

atoms. However, the QED values of two molecules are

much different. Following the observation mentioned

above, matrix mutation should make a little change in

the molecular structure for more effective exploration.

In this article, we design a responsive operation to

deal with this situation. There are three subopera-

tors combined to form the matrix mutation, which are

the add-atom operator, add-bond operator, and break-

bond operator respectively. A limited combination of

these operations can cover most of the local molecular

space.

Given a specified molecular matrix A with N atoms,

for the add-atom operator, we prepare an atom vN+1.

Then we randomly select an unsaturated atom vi in

molecule M, where we establish a single atomic bond

between atom vN+1 and atom vi. For the change-bond

and break-bond operators, we randomly select an non-

zero element Aij in molecular matrix A. Then we

change the value of Aij and assign 0 to Aij for the

change-bond and the break-bond operator respectively.

1470 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

More detailed description is in Algorithm 3. We denote

matrix mutation as Omut.

QED: 0.639

QED: 0.895

Fig.4. Motivation for mutation operator.

Algorithm 3. Matrix Mutation Omut

Input: a specified molecular matrix A with N atoms
Output: a new molecular matrix A′

1: A′ = null

2: operator randomly selected from add-atom, change-bond,

break-bond operator

3: if operator == add-atom operator:

4: Initialize A′ with an (N + 1)× (N + 1) matrix filled with

zero

5: Determine m, where Vm(A) = 1

6: for i = 1→ N

7: for j = 1→ N

8: A′ij ← Aij

9: end

10: end

11: A′N+1,m ← 1, A′m,N+1 ← 1

12: else:

13: A′ ← A

14: Determine i, j at random, where A′ij 6= 0

15: if operator == change-bond operator:

16: A′ij ← x, A′ji ← x, where x ∈ {1, 2, ..., Y }
17: else if operator == break-bond operator:

18: A′ij ← 0, A′ji ← 0

19: end

20: end

21: return A′

3.3.6 Evaluation and Selection

For generation g, we have the population Pg. After

matrix crossover and matrix mutation, CALM gene-

rates a certain number Nnew of offspring molecules,

which can be denoted as a set Qg. Now there is a

set Pg
′ = Pg ∪Qg containing all new molecules and re-

maining molecules in Pg. Therefore, Pg
′ has Np+Nnew

molecules.

To form the next generation, there are two main

stages called evaluation and selection. First, the evalua-

tion stage assigns an adaptive value to each molecule

in Pg
′ through a fitness function provided by an ex-

ternal software in this case. Second, the genetic al-

gorithm will select some molecules in Pg
′ with higher

fitness values to form the next generation. The selec-

tion scheme in CALM is performed by ranking the fit-

ness values from large to small and eliminating Nnew

molecules with lower fitness values to form the popu-

lation Pg+1. If we view the above process as a function

Os, we can get as follows:

Pg+1 ← Os(Pg
′).

3.3.7 Overall Algorithm

At last, we combine the above components together

to introduce the complete CALM algorithm in Algo-

rithm 4.

Algorithm 4. Framework of CALM Algorithm

Input: a specified dataset Ssub, maximum iteration limit
T , the number of population size Np, the number of
layers for matrix mutation Nl and the number of new
generated molecules Nnew

Output: population of solutions PT

1: Generation g = 0

2: Initialize the population P0 as follows:

P0 = (M1,0,M2,0, ...,MNp,0),

where M1,0,M2,0, ...,MNp,0 are randomly selected from

Ssub

3: while g < T do

4: Qg = {}
5: for k = 1→ Nnew

6: Randomly select operator from Ocro, Omut

7: if operator == Ocro:

8: Mi,g ,Mj,g randomly selected from Pg

9: Ai,g ←Mi,g , Aj,g ←Mj,g

10: Ai,g
sub ← Obfs(A

i,g) (Algorithm 1)

11: Aj,g
sub ← Obfs(A

j,g) (Algorithm 1)

12: Anew ← Ocom(Ai,g ,Ai,g) (Algorithm 2)

13: Mnew ← Anew

14: Qg ← Qg ∪ {Mnew}
15: else:

16: Mi,g randomly selected from Pg

17: Mtemp ←Mi,g

18: for l = 1→ Nl:

19: Atemp ←Mtemp

20: Anew ← Omut(Atemp) (Algorithm 3)

21: Mtemp ← Anew

22: Qg ← Qg ∪ {Mtemp}
23: end

24: end

25: end

26: Pg
′ ← Pg ∪Qg

27: Pg+1 ← Os(Pg
′) (Evaluation and selection)

28: g ← g + 1

29: end

30: return population PT

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1471

4 Experiments

In this section, we give a description for experimen-

tal setup and conduct extensive experiments to verify

the performance of CALM.

4.1 Experimental Setup

In this subsection, we concern the dataset, parame-

ters setup and baselines used in our experiments.

4.1.1 Dataset

The dataset used in our experiments is the publicly

available ZINC dataset [36] which is also widely used

in previous work. The ZINC dataset contains 250 000

drug-like commercially available molecules. On ave-

rage, these molecules contain an average of 23 heavy

atoms. We randomly sample molecules from this

dataset to initialize the population.

4.1.2 Parameters Setup

The settings of the algorithm mainly have the fol-

lowing four key points. First, for population initial-

ization, we set Np to 50 by default. Second, for ma-

trix crossover and matrix mutation, w is sampled from

the Poisson distribution with parameter λ. Given a

molecule M with N atoms, λ is set to 0.5 × N . And

Nl is set to 5. Third, for evaluation and selection, the

parameter Nnew is set to 5 × Np and the fitness func-

tion can be employed from the rdkit software [37], which

is the same as the previous work [20, 21,31–35]. Finally,

for the overall framework, the ratio of molecules gene-

rated by crossover and mutation is set to 1 : 5. And we

mainly concentrate on two important molecular prop-

erties: penalized logP and QED, where penalized logP

accounts for synthetic accessibility [38] and QED [39] is

an indicator of drug-likeness. These two properties are

widely used in the previous work [12, 25,28,40].

4.1.3 Baselines

We compare CALM with 10 baselines which can be

divided into four classes. The first class is the ZINC

dataset itself. We will compare the molecules gene-

rated by CALM with the molecules in the dataset.

The second class is deep learning methods, such as

MolDQN [40], JT-VAE [28], GCPN [12], CVAE [25] and

ALL-SMILES [30], which are all the representative ones

for molecular generation. The third class is the work

based on the genetic algorithm framework, which are

ChemGE [31], GB-GA [32], GA+D [33]. The last class

is traditional search methods, and contains random

search.

4.2 Experimental Results

In this subsection, we present the results of exten-

sive experiments.

4.2.1 Constraint Molecular Optimization for Large
Molecular Space

In this task, we optimize the penalized logP, which

is a logP score that accounts for the ring size and syn-

thetic accessibility, while constraining the degree of de-

viation sim(G,G′) between the original molecule G and

the modified molecule G′ above a threshold σ. This is a

more realistic scenario in the drug discovery, where the

development of new drugs usually starts with known

molecules [41]. Following the setup in [32], we optimize

800 molecules in the ZINC dataset with low penalized

logP. We calculate the molecular similarity based on the

Morgan fingerprint of radius 2 using the Tanimoto simi-

larity, which is the same as GB-GM [32]. Given one of

the 800 molecules, we use the BFS algorithm to sam-

ple 50 substructures of this molecule to initialize the

population. We run 800 times to find desired modified

molecules for each given molecule. The result is shown

in Table 1. The reason why our approach outperforms

other work is that CALM can find large molecules with

higher penalized logP while meeting the threshold of

similarity. The averaged number of atoms in original

molecules is 22.5. For σ = 0.4 and σ = 0.6, the av-

eraged number of atoms in modified molecules is 91.9

and 63.1 respectively, which shows that CALM has the

strong ability of exploring the large molecular space. By

applying the z test, we find that the differences between

the mean values obtained by CALM and the other al-

gorithms are statistically significant with |z| > 14.95,

which indicates that CALM has 99% confidence to be

significant. Given the specific computer task for the

molecular generation, CALM shows more powerful abi-

lity to cover the complex molecular environment.

4.2.2 Comparison of Distribution Underlying
Molecules

In this task, we verify that the methods based on

GANs and VAEs tend to learn the distribution under-

lying the dataset. However, the molecules generated

by CALM are independent with the dataset and obey

a different distribution. First, we introduce the data

used in this task. For the ZINC dataset, we just se-

lect the 100 molecules with the highest logP property.

1472 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

Table 1. Comparison on Constraint Molecular Optimization

Method σ = 0.4 σ = 0.6

Improvement Success (%) Improvement Success (%)

JT-VAE [28] 0.84±1.45 83.6 0.21±0.71 46.4

GCPN [12] 2.48±1.30 100.0 0.79±0.63 100.0

MMPA [42] 3.29±1.12 - 1.65±1.44 -

DEF [43] 3.41±1.67 85.9 1.55±1.19 72.6

VJTNN [42] 3.55±1.67 - 2.33±1.17 -

GA+D [33] 5.93±1.41 100.0 3.44±1.09 99.8

CALM 21.70±14.87 96.9 11.66±11.88 88.1

For CVAE, we generate 10 000 valid molecules and se-

lect 100 molecules with the highest logP property. For

CALM, we limit the maximum number of heavy atoms

to 30 in a molecule which is similar to that of the

molecules in the ZINC dataset. Then we represent the

molecules as bit vectors (fingerprints). In this case, we

use the standard Morgan fingerprint with the radius

of 4. This representation is used for a general ana-

lysis of the chemical space and widely used in previ-

ous work [31, 32]. Finally, for visualization, we compress

these 300 fingerprints that represent 300 molecules in

the three sets into two dimensions using PCA. The

result shown in Fig.5 illustrates that CALM can ex-

plore the molecular space that is not limited to the ini-

tial dataset. However, such unconstrained search often

leads to molecules that cannot be synthesized.

ZINC

CVAE

CALM

-2

2

1

0

-1

-2

-1 0 1

Dimension 1

D
im

e
n
si

o
n
 2

Fig.5. Comparison of top 100 molecules with the highest penal-
ized logP after PCA. The molecular size is around 30.

4.2.3 Molecular Property Optimization

In this task, we focus on generating molecules with

the highest possible penalized logP and QED scores.

Penalized logP is a logP score that accounts for the

ring size and the synthetic accessibility. Penalized logP

has an unbounded range, while the QED has a range

of [0, 1] by definition, and thus directly comparing the

percentage improvement of QED may not be meaning-

ful. This task is widely used to verify the performance

of molecular generation methods. However, there exists

insufficiency in the evaluation criteria in this task. The

penalized logP is severely affected by the number of

atoms. Normally, the larger the number of atoms, the

higher the value of penalized logP. Therefore, it is triv-

ial to compare the unbounded score of penalized logP

without limiting the number of atoms.

In order to compare our work with the previous

work fairly, we divide the previous work into two cate-

gories. One is the work that explicitly limits the num-

ber of atoms, and the other is the work that does not

limit the number of atoms. For the former, we compare

the efficiency between these tasks and CALM in detail.

For the latter, we list the related data for reference only.

In fact, we call on subsequent studies to give a detailed

description of the number of atoms used in the work.

For the work that clearly limits the number of

atoms, we take the experiment with a limited size of

generated molecules, where the SMILES string corre-

sponding to each molecule is restricted with a maximum

length of 81 characters. Following the same experimen-

tal setup in [28], the experimental result is shown in Ta-

ble 2. We can draw the following conclusions. CALM

can generate competitive results in a short time. By ap-

plying the z test, we find that the differences between

the mean values obtained by CALM and the other al-

gorithms are statistically significant with |z| > 4.17.

Table 2. Maximum Penalized logP Scores Averaged over 10
Runs

Method Max Number of CPU Time
logP Molecules (s)

ChemGE 4.9±0.5 5 000 7 200
5.6±0.5 20 000 28 800

GB-GM(80%) 3.4±0.6 1 000 90
4.3±0.6 5 000 540

GB-GA(50%) 6.8±0.7 1 000 30
GB-GA(1%) 7.4±0.9 1 000 30
CALM 10.1±0.7 6 500 30

Note: The above data is referenced from [31] and [32].

For the work with an unconstrained number of

atoms, the result is presented in Table 3. It is mean-

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1473

Table 3. Comparison of Top-3 Property Scores of Generated Molecules Found by Each Model

Method Penalized logP QED

1st 2nd 3rd Validity (%) 1st 2nd 3rd Validity (%)

ZINC [36] 4.52 4.30 4.23 100.0 0.948 0.948 0.948 100.0

JT-VAE [28] 5.30 4.93 4.49 100.0 0.925 0.911 0.910 100.0

GCPN [12] 7.98 7.85 7.80 100.0 0.948 0.947 0.946 100.0

CVAE [25] 4.52 4.23 4.22 10.3 0.948 0.948 0.948 10.3

MolDQN [40] 11.84 11.84 11.82 100.0 0.948 0.944 0.943 100.0

GB-GA [32] 12.85 12.85 12.80 99.6 - - - -

ChemGE [31] 6.37 6.24 6.22 27.3 0.947 0.947 0.947 16.3

ALL-SMILES [30] 42.46 42.42 41.54 - 0.948 0.948 0.948 -

CALM 63.75 61.48 60.51 100.0 0.948 0.948 0.948 100.0

Note: The numerical results of ZINC, GCPN, JT-VAE, MolDQN, ALL-SMILES are referenced from corresponding papers. The
remaining results are obtained by our experiments.

ingless to compare the scores without the limited num-

ber of atoms, because the number of atoms can greatly

affect the result. The molecules with the top high-

est penalized logP score generated by CALM contain

hundreds of atoms, which are very difficult to be syn-

thesized in practice because of stability and synthe-

sis. Therefore, we call on subsequent articles to explain

the conditions and environment when conducting this

experiment. And the molecules with the highest penal-

ized logP scores and QED are shown in Fig.6 and Fig.7

respectively.

63.75 61.48 60.51

Fig.6. Molecules with top-3 penalized logP scores.

0.948 0.948 0.948

Fig.7. Molecules with top-3 QED scores.

4.2.4 Accurate Property Target Task

In this experiment, we take the accurate property

target task to verify the performance of CALM. Molec-

ular weight is a basic property for a molecule. We pro-

vide several target values of molecular weight. We make

the experimental methods generate molecules whose

molecular weights are close to these targets as much

as possible. We select 50 results that are the closest to

the target and calculate their mean and variance. The

target values of the molecular weight are set to 150,

200 respectively, which is the same as [9]. We select

ChmeGE, random search and ZINC as baselines. The

random search is initialized with molecules in the ZINC

dataset. And we run each method for 10 minutes un-

der the same computing resources except for the ZINC

dataset.

As shown in Table 4, the performance of CALM is

the best obviously. The target of the molecular weight

with a value of 150 deserves more attention, where a

small number of molecules are around this target in

the ZINC dataset.

Table 4. Comparison of Results of Accurate Property Task by
Each Model

Model Molecular Weight

150 200

Mean STD Mean STD

ZINC [36] 150.36 4.50 200.04 2.52

ChemGE [31] 171.31 10.58 200.09 1.18

Random search 203.51 14.12 206.75 12.68

CALM 150.10 9.09 200.02 1.26

Note: STD: standard deviation.

4.2.5 Effect of the Parameters

In the following, we will discuss the influence of

parameters of CALM.

First, we show the effect of the mutation operator

under different population sizes. As mentioned above,

if we have no limit on the number of atoms, the logP

results will not be comparable. In this case, we set the

upper limit of the number of atoms to 70. The search

space is limited; therefore the results are comparable.

As shown in Fig.8, we run CALM for 30 minutes to

find the highest penalized logP. The solid lines repre-

sent different population sizes with molecular mutation.

With the same population size, the solid line is higher

than the same color dashed line, which indicates that

1474 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

the molecular mutation does contribute to the whole

algorithm. And the result also shows that if the popu-

lation size is larger than 250, the time consuming of a

single iteration will be much greater than that when

the population is 50 or 100, which will have a negative

effect.

5 10

9.0

8.5

8.0

7.5

7.0

6.5

6.0

Run Time (min)

Size=50 with Mutation

Size=50 Without Mutation

Size=100 with Mutation

Size=100 Without Mutation

Size=250 with Mutation

Size=250 Without Mutation

Size=500 with Mutation

Size=500 Without Mutation

P
e
n
a
li
z
e
d
 l
o
g
P

15 20 25 30

Fig.8. Effect of the mutation operator under different population
sizes.

Second, we show the effect of the layer of the mu-

tation operator Nl, which affects the scope of a single

mutation operation. As shown in Fig.9, we run CALM

with different execution times of the mutation operator

for searching the molecules with the highest QED. The

larger the size, the better the effect. We set Nl to 5 by

default in terms of the trade-off between performance

and computing resources.

0 100

0.94

0.92

0.90

0.88

0.86

0.84

0.82

0.80

200 300 400 500 600

Number of Iterations

Q
E
D

 S
c
o
re

700 800

N/

N/

N/

N/

Fig.9. Effect of different execution times of mutation operator.

4.2.6 Algorithm Analysis and Explanation

In the following, we will explain and analyze the ad-

vantages, disadvantages and characteristics of CALM.

As shown above, the performance of CALM is rela-

tively better than the other baselines’. The main rea-

son is that the algorithm’s crossover and mutation ope-

rations are relatively simple and flexible. The generated

multiple molecules will not have a similar paradigm;

therefore the molecular space can be explored more ef-

ficiently.

In theory, the computational complexity of the mu-

tation operator and crossover operator is O(n2), where

n is the number of the atoms in the molecule. This

complexity is acceptable under normal circumstances.

However, our design still has some flaws. Assuming

that a molecule contains n atoms, the time complexity

for adding or reducing an atom is O(n). Given that

the above operations will be performed in large num-

bers, this is unacceptable especially when n is large.

Therefore, proposing a more effective molecular repre-

sentation is still a challenging task.

Another issue to explore is the indication of the

number of simulation executions of the stochastic pro-

cesses. However, it depends on specific tasks. There-

fore, it is very difficult to give a suitable guidance. But

in fact, there are O(Nnew×n×n) stochastic choices in

one iteration, where Nnew is the number of new gene-

rated molecules and n is the average number of atoms

in a molecule. However, the number of new molecules

that can be generated in each iteration depends on the

population size. In practice, we have tested our algo-

rithm in our laptops. CALM can produce 13 000 new

molecules per minute in the constraint logP task. This

data can be used to guess how many stochastic pro-

cesses will be generated in the actual task.

5 Conclusions

In this paper, we introduced an efficient molecular

generation method called CALM. We performed z tests

on the results of the molecular generation tasks, which

showed that CALM is of significance with more than

99% confidence. At the same time, CALM is efficient

in time. CALM can achieve the above performance in

a short time. Additionally, we call on the scholars in

the future to pay more attention to the insufficiency

in experimental evaluation standard mentioned in this

work.

Acknowledgement The authors would like to

thank the valuable comments from the reviewers and

those important corrections from Dr. Jan H. Jenson.

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1475

References

[1] DiMasi J A, Grabowski H G, Hansen R W. Innovation

in the pharmaceutical industry: New estimates of R&D

costs. Journal of Health Economics, 2016, 47: 20-33. DOI:

10.1016/j.jhealeco.2016.01.012.

[2] Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular

design using machine learning: Generative models for mat-

ter engineering. Science, 2018, 361(6400): 360-365. DOI:

10.1126/science.aat2663.

[3] Broadbelt L J, Stark S M, Klein M T. Computer gene-

rated pyrolysis modeling: On-the-fly generation of species,

reactions, and rates. Industrial and Engineering Chemistry

Research, 1994, 33(4): 790-799. DOI: 10.1021/ie00028a003.

[4] Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pre-

training of deep bidirectional transformers for language un-

derstanding. arXiv.: 1810.04805, 2018. https://arxiv.org/a-

bs/1810.04805, Nov. 2022.

[5] Girshick R. Fast R-CNN. In Proc. the 15th IEEE Inter-

national Conference on Computer Vision, December 2015,

pp.1440-1448. DOI: 10.1109/ICCV.2015.169.

[6] He K M, Gkioxari G, Dollár P, Girshick R, Mask

R-CNN. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2020, 42(2): 386-397. DOI:

10.1109/TPAMI.2018.2844175.

[7] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based

learning applied to document recognition. Proceedings of

the IEEE, 1998, 86(11): 2278-2324. DOI: 10.1109/5.726791.

[8] Peters J, Schaal S. Policy gradient methods for robotics. In

Proc. the 19th IEEE/RSJ International Conference on In-

telligent Robots and Systems, October 2006, pp.2219-2225.

DOI: 10.1109/IROS.2006.282564.

[9] Liu Q, Allamanis M, Brockschmidt M, Gaunt A L. Con-

strained graph variational autoencoders for molecule design.

In Proc. the 32nd International Conference on Neural In-

formation Processing Systems, Dec. 2018, pp.7806-7815.

[10] Schütt K T, Arbabzadah F, Chmiela S, Müller K R,

Tkatchenko A. Quantum-chemical insights from deep tensor

neural networks. Nature Communications, 2017, 8: 13890.

DOI: 10.1038/ncomms13890.

[11] Lu C Q, Liu Q, Wang C, Huang Z Y, Lin P Z, He L X.

Molecular property prediction: A multilevel quantum in-

teractions modeling perspective. In Proc. the 33rd AAAI

Conference on Artificial Intelligence, Jul. 2019, pp.1052-

1060. DOI: 10.1609/aaai.v33i01.33011052.

[12] You J X, Liu B W, Ying R, Pande V, Leskovec J. Graph

convolutional policy network for goal-directed molecular

graph generation. In Proc. the 32nd International Confe-

rence on Neural Information Processing Systems, Dec.

2018, pp.6412-6422.

[13] Hao Z K, Lu C Q, Huang Z Y, Wang H, Hu Z Y, Liu Q, Chen

E H, Lee C. ASGN: An active semi-supervised graph neu-

ral network for molecular property prediction. In Proc. the

26th ACM SIGKDD International Conference on Know-

ledge Discovery and Data Mining, Aug. 2020, pp.731-752.

DOI: 10.1145/3394486.3403117.

[14] Polishchuk P G, Madzhidov T I, Varnek A. Estimation of

the size of drug-like chemical space based on GDB-17 data.

Journal of Computer Aided Molecular Design, 2013, 27(8):

675-679. DOI: 10.1007/s10822-013-9672-4.

[15] Macarron R, Banks M N, Bojanic D, Burns D J, Cirovic

D A, Garyantes T, Green D V S, Hertzberg R P, Janzen

W P, Paslay J W, Schopfer U, Sittampalam G S. Impact

of high-throughput screening in biomedical research. Na-

ture Reviews Drug Discovery, 2011, 10(3): 188-195. DOI:

10.1038/nrd3368.

[16] Pyzer-Knapp E O, Suh C, Gómez-Bombarelli R, Aguilera-

Iparraguirre J, Aspuru-Guzik A. What is high-throughput

virtual screening? A perspective from organic materials

discovery. Annual Review of Materials Research, 2015, 45:

195-216. DOI: 10.1146/annurev-matsci-070214-020823.

[17] Goodfellow I J, PougetAbadie J, Mirza M, Xu B, Warde-

Farley D, Ozair S, Courville A, Bengio Y. Generative adver-

sarial nets. In Proc. the 27th International Conference on

Neural Information Processing Systems, December 2014,

pp.2672-2680.

[18] Kingma D P, Welling M. Auto-encoding variational bayes.

arXiv: 1312.6114, 2013. https://arxiv.org/abs/1312.6114,

Nov. 2022.

[19] Kipf T N, Welling M. Variational graph auto-encoders.

arXiv: 1611.07308, 2011. https://arxiv.org/abs/1611.073-

08, Nov. 2022.

[20] Grover A, Zweig A, Ermon S. Graphite: Iterative generative

modeling of graphs. In Proc. the 36th International Confe-

rence on Machine Learning, May 2019, pp.2434-2444.

[21] Simonovsky M, Komodakis N. GraphVAE: Towards gene-

ration of small graphs using variational autoencoders. In

Proc. the 27th International Conference on Artificial Neu-

ral Networks, Oct. 2018, pp.412-422.

[22] You J X, Ying R, Ren X, Hamilton W L, Leskovec J.

GraphRNN: Generating realistic graphs with deep auto-

regressive models. In Proc. the 35th International Confe-

rence on Machine Learning, Jul. 2018, pp.5694-5703.

[23] Liao R J, Li Y J, Song Y, Wang S L, Hamilton W L, Duve-

naud D, Urtasun R, Zemel R. Efficient graph generation

with graph recurrent attention networks. arXiv: 1910.

00760, 2019. https://arxiv.org/abs/1910.00760, Oct. 2019.

[24] You J X, Wu H Z, Barrett C, Ramanujan R, Leskovec J.

G2SAT: Learning to generate SAT formulas. In Proc. the

32nd International Conference on Neural Information Pro-

cessing Systems, Dec. 2019, pp.10552-10563.

[25] Gómez-Bombarelli R, Wei J N, Duvenaud D, Hernández-

Lobato J M, Sánchez-Lengeling B, Sheberla D, Aguilera-

Iparraguirre J, Hirzel T D, Adams R P, Aspuru-Guzik A.

Automatic chemical design using a data-driven continuous

representation of molecules. ACS Central Science, 2018,

4(2): 268-276. DOI: 10.1021/acscentsci.7b00572.

[26] Weininger D. SMILES, a chemical language and informa-

tion system. 1. Introduction to methodology and encoding

rules. Journal of Chemical Information and Modeling, 1988,

28(1): 31-36. DOI: 10.1021/ci00057a005.

[27] Samanta B, De A, Jana G, Chattaraj P K, Ganguly N,

Rodriguez M G. NeVAE: A deep generative model for

molecular graphs. In Proc. the 33rd AAAI Conference

on Artificial Intelligence, Jul. 2019, pp.1110-1117. DOI:

10.1609/aaai.v33i01.33011110.

[28] Jin W G, Barzilay R, Jaakkola T S. Junction tree varia-

tional autoencoder for molecular graph generation. In Proc.

the 35th International Conference on Machine Learning,

Jul. 2018, pp. 2328-2337.

https://doi.org/10.1016/j.jhealeco.2016.01.012
https://doi.org/ 10.1021/ie00028a003
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/IROS.2006.282564
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1609/aaai.v33i01.33011052
https://doi.org/10.1145/3394486.3403117
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1038/nrd3368
https://doi.org/10.1146/annurev-matsci-070214-020823
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1609/aaai.v33i01.33011110

1476 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

[29] Sutton R S, Barto A G. Reinforcement Learning: An Intro-

duction. MIT Press, 2018.

[30] Alperstein Z, Cherkasov A, Rolfe J T. All SMILES varia-

tional autoencoder. 1905.13343, 2019. https://arxiv.org/a-

bs/1905.13343, Nov. 2022.

[31] Yoshikawa N, Terayama K, Sumita M, Homma T, Oono

K, Tsuda K. Population-based de novo molecule gene-

ration, using grammatical evolution. Chemistry Letters,

2018, 47(11): 1431-1434. DOI: 10.1246/cl.180665.

[32] Jensen J H. A graph-based genetic algorithm and genera-

tive model/Monte Carlo tree search for the exploration of

chemical space. Chemical Science, 2019, 10(12): 3567-3572.

DOI: 10.1039/C8SC05372C.

[33] Nigam A, Friederich P, Krenn M, Aspuru-Guzik A. Aug-

menting genetic algorithms with deep neural networks for

exploring the chemical space. In Proc. the 8th Interna-

tional Conference on Learning Representations, April 2020,

pp.250-256.

[34] Banzhaf W, Nordin P, Keller R E, Francone F D. Genetic

Programming: An Introduction on the Automatic Evolu-

tion of Computer Programs and Its Application. Morgan

Kaufmann Publishers, 1998.

[35] Kim Y, Kim W Y. Universal structure conversion method

for organic molecules: From atomic connectivity to three-

dimensional geometry. Bulletin of the Korean Chemical So-

ciety, 2015, 36(7): 1769-1777. DOI: 10.1002/bkcs.10334.

[36] Irwin J J, Sterling T, Mysinger M M, Bolstad E S, Cole-

man R G. ZINC: A free tool to discover chemistry for biol-

ogy. Journal of Chemical Information and Modeling, 2012,

52(7): 1757-1768. DOI: 10.1021/ci3001277.

[37] Coley C W, Green W H, Jensen K F. RDChiral: An RD-

Kit wrapper for handling stereochemistry in retrosynthetic

template extraction and application. Journal of Chemical

Information and Modeling, 2019, 59(6): 2529-2537. DOI:

10.1021/acs.jcim.9b00286.

[38] Ertl P, Schuffenhauer A. Estimation of synthetic accessibil-

ity score of drug-like molecules based on molecular comple-

xity and fragment contributions. Journal of Cheminformat-

ics, 2009, 1: Article No. 8. DOI: 10.1186/1758-2946-1-8.

[39] Bickerton G R, Paolini G V, Besnard J, Muresan S, Hop-

kins A L. Quantifying the chemical beauty of drugs. Nature

Chemistry, 2012, 4(2): 90-98. DOI: 10.1038/nchem.1243.

[40] Zhou Z P, Kearnes S, Li L, Zare R N, Riley P. Optimization

of molecules via deep reinforcement learning. Scientific Re-

ports, 2019, 9(1): 10752. DOI: 10.1038/s41598-019-47148-x.

[41] Bleicher K H, Böhm H J, Müller K, Alanine A I. Hit and

lead generation: Beyond high-throughput screening. Na-

ture Reviews Drug Discovery, 2003, 2(5): 369-378. DOI:

10.1038/nrd1086.

[42] Jin W G, Yang K, Barzilay R, Jaakkola T. Learning mul-

timodal graph-to-graph translation for molecular optimiza-

tion. arXiv: 1812.01070, 2018. https://arxiv.org/abs/181-

2.01070, Nov. 2022.

[43] Assouel R, Ahmed M, Segler M H, Saffari A, Bengio Y. DE-

Factor: Differentiable edge factorization-based probabilis-

tic graph generation. arXiv: 1811.09766, 2018. https://ar-

xiv.org/abs/1811.09766, Nov. 2022.

Jian-Fu Zhu received his Bachelor’s

degree in communication engineering

from Hunan University, Changsha, in

2018. He is currently a postgraduate

student, School of Computer Science

and Technology, University of Science

and Technology of China, Hefei. His

research interests mainly include graph

neural networks, molecular property prediction and

molecular generation.

Zhong-Kai Hao is an undergrad-

uate student, School of Mathematics,

University of Science of Technology of

China, Hefei. He has been awarded

Yang Yuanqing Education Fund Schol-

arship. His interests mainly contain

graph neural networks, molecular

property prediction and active learning.

Qi Liu received his Ph.D. degree in

computer science from University of

Science and Technology of China, Hefei,

in 2013. He is a professor of School

of Computer Science and Technology,

University of Science and Techno-

logy of China, Hefei. He has been

awarded ICDM’11 Best Research Paper

Award, KDD’18 (Research Track) Best Student Paper

Award, KSEM’13 Best Paper Award, Alibaba Dharma

Academy Green Orange Award, and so on. His gene-

ral area of research is data mining and knowledge discovery.

Yu Yin received his Bachelor’s

degree in computer science from Uni-

versity of Science and Technology of

China, Hefei, in 2017. He is a Ph.D.

student, School of Computer Science

and Technology, University of Science

and Technology of China, Hefei. He

has a wide range of research interests

including reinforcement learning, natural language pro-

cessing, and data mining.

https://doi.org/ 10.1246/cl.180665
https://doi.org/10.1039/C8SC05372C
https://doi.org/10.1002/bkcs.10334
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/acs.jcim.9b00286
https://doi.org/ 10.1186/1758-2946-1-8
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/nrd1086

Jian-Fu Zhu et al.: Towards Exploring Large Molecular Space: An Efficient Chemical Genetic Algorithm 1477

Cheng-Qiang Lu received his

Bachelor’s degree in computer science

from Nanjing University of Aeronautics

and Astronautics, Nanjing, in 2017,

and his Master’s degree in computer

science from University of Science

and Technology of China, Hefei, in

2020. He is a senior algorithm re-

searcher employed by Alibaba Group now. His research

mainly focuses on the application of graph neural networks.

Zhen-Ya Huang received his Ph.D.

degree in computer science from Univer-

sity of Science and Technology of China,

Hefei, in 2020. He is an associate re-

searcher of School of Computer Science

and Technology, University of Science

and Technology of China, Hefei, now.

Dr. Huang has been awarded Excellent

Award of President Scholarship of Chinese Academy of

Sciences, the 6th Huayu Fund Scholarship for Graduate

Students and so on. The application of data mining for

education and finance is his main research interest.

En-Hong Chen received his Ph.D.

degree in computer science from Univer-

sity of Science and Technology of China,

Hefei, in 1996. Chen is a professor,

an executive dean of School of Data

Science and the vice dean of School of

Computer Science and Technology of

University of Science and Technology

of China, Hefei. He is a fellow of CCF, and a senior

member of IEEE. Chen won the Best Application Paper

Award of KDD’08 and Best Research Paper Award of

ICDM’11. His current research interests are data mining

and machine learning, especially social network analysis

and recommender systems.

	1 Introduction
	2 Related Work
	2.1 Traditional Work
	2.2 Graph Generation
	2.3 Deep Learning Models for MoleculeGeneration
	2.4 Genetic Algorithm for Molecular Design

	3 Proposed Method
	3.1 Problem Definition
	3.2 Overall Framework
	3.3 Components of CALM
	3.3.1 Molecular Representation
	3.3.2 Chemical Constraint Mask
	3.3.3 Population Initialization
	3.3.4 Matrix Crossover
	3.3.5 Matrix Mutation
	3.3.6 Evaluation and Selection
	3.3.7 Overall Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.1.1 Dataset
	4.1.2 Parameters Setup
	4.1.3 Baselines

	4.2 Experimental Results
	4.2.1 Constraint Molecular Optimization for Large Molecular Space
	4.2.2 Comparison of Distribution UnderlyingMolecules
	4.2.3 Molecular Property Optimization
	4.2.4 Accurate Property Target Task
	4.2.5 Effect of the Parameters
	4.2.6 Algorithm Analysis and Explanation

	5 Conclusions

