
Li Y, Dai J, Fan XL et al. I/O efficient early bursting cohesive subgraph discovery in massive temporal networks. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 37(6): 1337–1355 Nov. 2022. DOI 10.1007/s11390-022-2367-3

I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive
Temporal Networks

Yuan Li1 ( ), Member, CCF, Jie Dai1,2 ( ), Student Member, CCF
Xiao-Lin Fan1 (), Student Member, CCF, Yu-Hai Zhao2,∗ (), Senior Member, CCF, and
Guo-Ren Wang3 (), Senior Member, CCF

1School of Information Science and Technology, North China University of Technology, Beijing 100144, China
2School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
3School of Computer, Beijing Institute of Technology, Beijing 100081, China

E-mail: liyuan@ncut.edu.cn; {18151010205, 2019312170106}@mail.ncut.edu.cn; zhaoyuhai@mail.neu.edu.cn
E-mail: wanggr@bit.edu.cn

Received March 30, 2022; accepted November 8, 2022.

Abstract Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding

the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in

temporal networks. The BCS has a large number of applications, such as representing emergency events in social media,

traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS

lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive

subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS,

we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal

information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively

removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by

first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph

in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be

completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global

search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external

model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of

our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while

the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.

Keywords early bursting cohesive subgraph (EBCS), I/O efficient algorithm, semi-external model, temporal network

1 Introduction

Temporal networks are composed of nodes and

edges associated with timestamps, where nodes and

edges represent the entities and the relationships be-

tween entities, respectively. Moreover, the edges may

have time-varying weight which reflects the strength of

the connections at different timestamps. As such, tem-

poral networks are becoming essential to describe the

dynamics of complex matters in the real world [1].

Cohesive subgraph mining (CSM) in temporal net-

works is a fundamental problem, which aims to dis-

cover the densely-connected regions that meanwhile ful-

fill the temporal constraints of the network. According

to different variations of temporal patterns, the stu-

dies can be broadly classified into three categories, in-

cluding continuous [2–6], periodic [7, 8] and bursting [9, 10]

cohesive subgraph mining. Among them, the burst-

Regular Paper

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61902004, 61772124, 61732003,
and 61977001, the Project of Beijing Municipal Education Commission under Grant No. KM202010009009, Innovative Talents of Higher
Education in Liaoning Province under Grant No. LR2020076, and the Basic Research Operating Funds for National Defense Major
Incubation Projects under Grant No. N2116017.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2022

http://dx.doi.org/10.1007/s11390-022-2367-3

1338 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

ing cohesive subgraph (BCS) is a subgraph that can

accumulate its cohesiveness at the fastest rate in tem-

poral networks. It represents the sudden appearance

of real-world matters and has many practical applica-

tions. For example, the BCS can represent an emer-

gency disaster (e.g., earthquake [11]) that is suddenly

and widely spread in social media, a traffic congestion

where there is a sudden and dramatic increase in the

number of vehicles waiting at intersections or along the

streets in road networks [12], and an epidemic outbreak

like COVID-19 having a rapid spread in the community-

based network [13].

Motivation. Although the BCS has a large number

of applications in real temporal networks, there are not

many studies on the BCS. Qin et al. [9] proposed the

(l, δ)-maximal dense core model, which is a temporal

subgraph where each node has an average degree no

less than δ in a time segment with a length no less than

l. Chu et al. [10] proposed the density bursting sub-

graph (DBS), which is a subgraph that accumulates its

density at the fastest speed in an arbitrarily long time

duration. One commonality in the above two models is

that they both require the subgraphs lasting for at least

a time interval, e.g., l. However, this requirement ne-

glects the timeliness and avoids the bursting subgraphs

being discovered earlier.

Our Model. Intuitively, the earlier an emergency

event is detected, the better it can be handled. There-

fore, in this paper, we propose the early bursting co-

hesive subgraph (EBCS) model, which can support the

discovery of bursting events from temporal networks in

a timely manner. Specifically, an EBCS is defined as

the maximal connected subgraph that meets both the

cohesiveness and the burstiness criteria. Here, we use

the commonly-used minimum degree [14, 15] to measure

the cohesiveness of the EBCS. And for the measure-

ment of the burstiness of the EBCS, we customize a

subgraph burstiness (detailed in Definition 7), which is

the smallest time weight of the node in the subgraph.

And the time weight is computed as the product of the

burst rate and the increment between two moments,

i.e., 4|4|T , where 4 denotes the increment and T de-

notes the interval between two moments.

For example, Fig.1 shows a toy temporal road net-

work, where the nodes represent locations and the edges

represent roads connecting different locations. Edge

Loc. 1

Road 2:

8

Road 6:
12

Road 3:

5

Road 1:

0

Road 5:

0

Road 4:

0

Loc. 2 Loc. 4

Loc. 3

Loc. 1

Road 2:

38

Road 6:
42

Road 3:

35

Road 1:

40

Road 5:

39

Road 4:

37

Loc. 2 Loc. 4

Loc. 3

Loc. 1

Road 2:

98

Road 6:

125

Road 3:

85

Road 1:

100

Road 5:

89

Road 4:

87

Loc. 2 Loc. 4

Loc. 3

a c

0

50

100

150

200

250

300

350

S
tr

u
c
tu

re
 W

e
ig

h
t

Momemt

 Loc. 1

 Loc. 2

 Loc. 3

 Loc. 4

b

(c)

(a) (b)

(d)

Fig.1. A toy example of the EBCS in a temporal road network. (a) Moment a. (b) Moment b. (c) Moment c. (d) Change rates in the
structure weights of nodes. Loc.: location.

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1339

weights at different moments denote the number of ve-

hicles waiting on the roads. Let us consider the graph

S composed of {Loc. 1, Loc. 2, Loc. 3, Loc. 4}. The

structure weights (detailed in Definition 4) of nodes

corresponding to moments a and b are {13, 12, 20, 5}
and {113, 121, 117, 111} respectively. And the struc-

ture weight of a node is calculated as the sum of its

adjacent edge weights. Now, corresponding to moment

a, the time weights of the nodes of S at moment b are

{ 100
2

b−a ,
1092

b−a ,
972

b−a ,
1062

b−a }, and S is an EBCS with the mini-

mum degree of 3 and burstiness of 972/(b − a), which

indicates that a slight traffic jam has occurred on these

roads. In other words, once we can detect the EBCS at

moment b (shown in Fig.1(b)), we are able to take mea-

sures in time to avoid a worse traffic jam at moment c

(shown in Fig.1(c)).

Challenges. Actually, finding the EBCS in massive

temporal networks is not a trivial task, and we mainly

face the following two challenges. 1) In temporal net-

works, edges and edge weights are always changing with

time and the number of edges is massive. Thus, how to

measure the burstiness of the subgraph in this variation

is a big challenge. 2) Because the EBCS has an urgent

need for timeliness to ensure the bursting events being

identified as soon as possible, we have to design efficient

algorithms to find the EBCS. Furthermore, the situa-

tion will be much worse when the massive temporal

networks cannot be entirely loaded into the memory.

Our Solutions. Since nodes are more stable than the

massive evolving edges in temporal networks, we first

transform the edge weights in temporal networks into

node weights, by accumulating the weights of edges to

their connected nodes. At the same time, we define

the structure weight of each node as its node weight,

which is robust to outliers. Further, by exploiting the

sliding-window technique, we can calculate the time

weight (burstiness) of each node in the current moment

network through the burst rate and the increment of

the structure weight compared with the network in the

most recent sliding-window. In this way, we can per-

ceive the burstiness of the current moment network,

named as time weight graph (TWG), in time. To find

the EBCS in TWG, 1) we propose a global search al-

gorithm, called GS-EBCS, which iteratively removes

the nodes with the smallest time weight while main-

taining the structure constraints. 2) We further pro-

pose a local search algorithm with the idea of expand-

ing and refining [16], called LS-EBCS. Specifically, LS-

EBCS first expands the subgraph from the node with

the largest time weight and then refines the discovered

subgraph to satisfy the constraints of the EBCS, which

is optimal.

On top of our conference paper [16], we improve GS-

EBCS and LS-EBCS. After the two algorithms find

the k-core, instead of the original method that updates

the degrees of the remaining nodes every time when

a node is deleted, we develop a batch-deletion strat-

egy that includes a multiplication operation and an in-

half operation. In this way, the algorithms only up-

date the degrees of the remaining nodes once after one

batch. The details of this approach are described in

Subsection 4.2. In addition, we further consider the

situation that the massive temporal networks cannot

be fully loaded into the memory. We design I/O ef-

ficient approaches to discover the EBCS based on the

semi-external model, which only requires the node in-

formation to be loaded in the memory. To the best of

our knowledge, this is the first work exploiting I/O ap-

proaches to solve the CSM problem in massive temporal

networks. 1) To adapt to the semi-external model, we

propose an I/O time weight graph transformation al-

gorithm, whose I/O complexity is O(2|V |+4|E|
B), where

|V | denotes the number of nodes, |E| is the number

of edges, and B represents the disk block size. 2)

To discover the EBCS, we propose the I/O-GS algo-

rithm, which loads all the node information from the

disk and finds the nodes that can form the maximum

k-core based on this information and then discovers

the EBCS among these nodes. The I/O complexity

of I/O-GS is O((|V |+|E|)
B). 3) To further reduce the

I/O cost as well as the memory usage, we propose the

I/O-LS algorithm. Due to I/O-LS preferentially load-

ing nodes with the largest time weight, it rarely loads

all the nodes into memory. The I/O complexity of I/O-

LS is O(
∑i=l

i=1(|S(i)|+|E[S(i)]|)+|E[S(l)]|
B), where l denotes

the number of expansions, S(i) denotes the number of

nodes visited in the i-th expansion, and E[S(i)] rep-

resents the edges induced by S(i). In fact, except for

the I/O time weight graph transformation algorithm,

it is not necessary to load the adjacent edges of each

node. Therefore, the actual I/O and memory con-

sumption could be even smaller. For example, on the

DBLP dataset, I/O-LS and LS have comparable run-

ning time, while the maximum memory usage of I/O-LS

is only 6.5 MB, which is much smaller than that of LS,

308.7 MB.

Our contributions about this paper are as follows.

• We propose an early bursting cohesive subgraph

(EBCS) model in massive temporal networks, which

enables the discovery of bursting matters in a timely

1340 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

manner.

• We develop two in-memory EBCS discovery al-

gorithms, called GS-EBCS and LS-EBCS, respectively.

GS-EBCS finds the EBCS by iteratively removing

nodes from the graph, while the LS-EBCS algorithm

exploits the idea of expanding and refining, and in gene-

ral, does not need to visit the whole graph.

• We further propose the I/O time weight graph

transformation algorithm, the I/O-GS algorithm and

the I/O-LS algorithm based on the semi-external

model. Among them, I/O-LS has the best performance

and further reduces the I/O cost and memory usage.

To the best of our knowledge, this is the first study to

use I/O methods to deal with CSM in massive temporal

networks.

In the end, extensive experiments are conducted

on four real temporal networks to demonstrate the ef-

ficiency and effectiveness of our proposed algorithms.

The organization is as follows. Section 2 introduces the

related work. Section 3 gives the concepts and the prob-

lem definition. Sections 4 and 5 detail the in-memory

and I/O efficient algorithms, respectively. Section 6

demonstrates the experiments. Finally, we conclude the

paper in Section 7.

2 Related Work

Our work is related to the topics of cohesive sub-

graph mining (CSM) in weighted networks and tempo-

ral networks, and I/O efficient graph processing.

CSM in Weighted Networks. The weighted networks

can be divided into node-weighted networks and edge-

weighted networks. For CSM in node-weighted net-

works, Li et al. [17, 18] proposed to find the top-r k-cores

with the largest minimum node weight as the influen-

tial community. For the same problem, Chen et al. [19]

proposed a more efficient method, which only needs

to check the connected components relevant with the

top-r results. Furthermore, from the local perspective,

Bi et al. [20] proposed a progressive local search algo-

rithm, which does not need to visit the whole struc-

ture of the network. For CSM in edge-weighted net-

works, Zheng et al. [21] developed a method to find the

k-truss with the largest minimum edge weight. Sun

et al. [22] proposed an index-based method to find the

k-core with the smallest group weight. In this work,

we transform the temporal networks with edge weights

into time weight graphs with node weights, which are

used to measure the burstiness of subgraphs.

CSM in Temporal Networks. Based on different

temporal patterns, the work of CSM in temporal net-

works can be further categorized as continuous CSM,

periodic CSM and bursting CSM. For persistent CSM,

Li et al. [2] first proposed to find the maximum (θ, τ)

persistent k-core in a temporal network, which can cap-

ture the persistence of a cohesive subgraph. Then, Li

et al. [6] studied the personalized version of the (θ, τ)

persistent k-core problem, which identifies the (θ, τ)-

continual k-core containing one query node. Qin et

al. [4] proposed a density-based clustering problem to

detect stable communities in temporal graphs, which

are required to appear for a certain time. Semertzidis

et al. [3] proposed methods to find the densest set of

nodes aggregated in at least k graph snapshots. To en-

hance the diversity of results, Lin et al. [5] formulated

a diversified lasting cohesive subgraphs problem to find

top-r maximal lasting (k, p)-cores with maximum cov-

erage regarding the number of vertices and timestamps.

For periodic CSM, Lahiri and Berger-Wolf [23] proposed

to find periodic or near periodic subgraphs in temporal

networks. Qin et al. [7, 24] proposed to find the maxi-

mal σ-periodic k-clique, which is a clique with a size

larger than k that appears at least σ times periodically

in temporal graphs. In addition, Zhang et al. [8] consi-

dered the seasonal feature of the periodic subgraph. For

bursting CSM, Chu et al. [10] proposed methods to find

the density bursting subgraph in temporal networks.

Qin et al. [9] proposed a maximal dense core model to

represent the bursting cohesive subgraph in temporal

networks. However, both of the existing bursting CSM

methods required the bursting subgraphs lasting for a

certain time interval. In this paper, we study the EBCS

problem, which takes the timeliness of the bursting co-

hesive subgraph into account.

I/O Graph Processing. I/O is an effective way for

massive graph data processing [25]. Cheng et al. [26] first

proposed the external-memory algorithm for core de-

composition in massive graphs. Sun et al. [27] proposed

GraphMP to tackle big graph analysis on a single ma-

chine by reducing the disk I/O overhead. Recently, the

semi-external model has been extensively studied for

massive graph processing, due to its power on limit-

ing memory properties. In the semi-external model,

only nodes can be loaded in memory while edges are

stored on disk. Wen et al. [28] studied the I/O effi-

cient core decomposition following the semi-external

model. Yuan et al. [29] proposed I/O efficient meth-

ods to compute k-edge connected components (k-ECC)

decomposition via graph reduction. Zhang et al. [30]

proposed I/O-efficient semi-external algorithms to find

all strongly connected components (SCC) for a massive

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1341

directed graph. Sun et al. [27] proposed a new EP-SCC

algorithm to further optimize the in-memory processes.

Jiang et al. [31] designed a semi-external method to find

k-turss communities in massive graphs. Li et al. [18] pro-

posed a novel I/O-efficient algorithm to find the top-r

k-influential communities. In this paper, we propose

I/O efficient algorithms to find the EBCS by the semi-

external model.

3 Problem Formulation

In this section, we introduce the relevant notations

and definitions over the EBCS, and give the specific

problem definition.

3.1 General Concepts

Given a temporal network, it consists of a set

of snapshot graphs with continuous timestamps, and

each snapshot graph can be abstractly represented as

Gx (V,E(x), A(x), tx), where V represents the set of

nodes, |V | denotes the number of nodes in V , and each

Gx has the same V . tx ∈ {ti, ti+1, . . . , tj} denotes the

timestamps. At timestamp tx, e(u,v) denotes the undi-

rected edge between two nodes u, v ∈ V . E(x) denotes

the set of edges at timestamp tx and |E(x)| denotes the

number of edges. ew(u,v) > 0 denotes the edge weight

between two nodes u, v, where ew ∈ A(x), and A(x)

is a |V | × |V | matrix storing the weight between any

two nodes. And ew(u,v) = 0 means there is no edge

between two nodes u, v. Therefore, it is also possible

to represent the set of edges by A(x). For a node u

of Gx, nbrGx(u) denotes the set of neighbor nodes of

node u in Gx, degGx
(u) denotes the degree of node u

in Gx, and |nbrGx
(u)| = degGx

(u). In addition, we use

size(Gx) = |V |+ |E(x)| to represent the size of Gx.

Graph Storage. For each Gx, we use two tables for

storage on disk. One is the node table, which stores the

nodes and their corresponding degrees, and the other is

the edge table, which stores the edges and edge weights.

For example, for the edge table of Fig.2(e), each row

is shaped as (v1, v2, v3, v4, 5, 7, 3). It represents the

neighbor nodes of node v1 and their corresponding edge

weights.

Definition 1 (Induced Subgraph). Given a set

S ⊆ V , then the graph consisting of S and its connected

edges in Gx is called the induced subgraph of Gx, de-

noted as Gx[S]. E(x)[S] represents edges induced by

S.

Definition 2 (Subgraph Goodness). For an in-

duced subgraph Gx[S], the subgraph goodness of Gx[S]

can be defined by the minimum degree:

δ (Gx[S]) = min
{
degGx[S](v) | v ∈ S

}
.

Definition 3 (K-C Subgraph). Given a posi-

tive integer k, if Gx[S] is a connected subgraph and

δ (Gx[S]) > k, then Gx[S] is called as the K-C sub-

graph, which is denoted as Gkx[S].

To solve the challenges in Section 1, we consider re-

flecting the changes of edges to nodes, i.e., transforming

an edge-weighted temporal network to a node-weighted

temporal network, which exploits the topology of the

network and historical temporal information. And this

transformation is implemented in the following two def-

initions.

Definition 4 (Structure Weight). For any node u

in Gx, the structure weight of node u is the sum of the

weights of the edges connected to u, i.e., sumx(u) =∑
v∈nbrGx (u)

ew(u,v).

Definition 5 (Time Weight). Given a positive inte-

ger sg and two snapshot graphs Gx and Gx−sg, for any

node u in Gx, 4 = sumx(u) − sumx−sg(u) represents

the increment of u in the time interval sg. Thus, the

time weight of u is defined as:

twnx(u) =
4|4|
sg

. (1)

In Definition 5, we use the technique of sliding-

window [32] to control the sensitivity of discovering the

burst. sg represents the length of the sliding-window.

And we make comparison between the snapshot graphs

Gx and Gx−sg, corresponding to the timestamp tx and

v
v v

v v

v v v
v v v

v v v v v v v v v v

v v v v
v

v

  

 



 



 



 v ↼↽ v ↼.↽



 



 v ↼.↽

↼.↽↼.↽







 



(b)(a) (c) (d) (e) (f)

Fig.2. Example of a temporal network and a TWG. (a) G1. (b) G2. (c) G3. (d) G4. (e) G5. (f) G̃5 (sg = 4).

1342 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

the timestamp sg moment before tx, i.e., tx−sg. There-

fore, the smaller sg is, the smaller the time interval left

for event bursting is, and the higher the sensitivity of

discovering the burst is.

In addition, in (1), we use 4/sg to represent the

burst rate of increment 4. Then, the product of the

burst rate and the increment, i.e., twnx(u), indicates

the severity of the burst. Thus, a larger twnx(u) indi-

cates a larger burst of u, and then u is of more concern.

twnx(u) is also the final node weight of u.

Definition 6 (Time Weight Graph). Let node set

S contain all the nodes u ∈ V with twnx(u) > 0. Then,

we call Gx[S] as the time weight graph of Gx, or TWG

for short. And TWG is denoted as G̃x.

We use V (x) and Ẽ(x) to denote the set of nodes

and the set of edges of G̃x respectively.

Definition 7 (Subgraph Burstiness). For a G̃x[M],

the subgraph burstiness of G̃x[M] is defined as the mini-

mum time weight of the node in G̃x[M], i.e.,

sgb
(
G̃x[M]

)
= min {twnx(u) | u ∈M} .

Definition 8 (EBCS). Given a threshold ϕ, a

positive interger k, and a G̃x, let max weight =

max{twnx(u) | u ∈ V (x)}, and then we can find a

node set S ⊆ V (x) such that 1) max weight > ϕ; 2)

G̃x[S] is a K-C subgraph; 3) among all K-C subgraphs,

sgb
(
G̃x[S]

)
is the largest; 4) there exists no other sub-

graph G̃x[M] such that G̃x[M] is a supergraph of G̃x[S]

with sgb
(
G̃x[M]

)
= sgb

(
G̃x[S]

)
and G̃x[M] is also a

K-C subgraph, and then G̃x[S] is the EBCS.

From condition 3, we can infer that the number

of nodes of EBCS is the maximum among all sub-

graphs that satisfy conditions 1 and 2. For any node

v ∈ V (x) with twnx(v) = sgb
(
G̃x[S]

)
, if v /∈ S , then

degG̃x[S∪{v}](v) must not satisfy k.

Example 1. We set k = 2, ϕ = 19, and sg = 4. 1)

Figs.2(a)–2(e) show a temporal network consisting of

five snapshot graphs. 2) The node set S = {v1, v2, v3}
and its edges in Fig. 2(e) form an induced subgraph

G5[S], and its subgraph goodness is 2 > k. Then, G5[S]

is a K-C subgraph according to Definition 3. Actually,

G5[S ∪ {v4}] is also a K-C subgraph, and it is the su-

pergraph of G5[S]. 3) According to Definitions 4–6, we

transform G5 into G̃5, shown in Fig.2(f). In G5 and

G1, the structure weights of v1 are 3 + 7 + 5 = 15 and

2 respectively, and thus, the time weight of v1 in G̃5

is (15 − 2)2/4 = 42.25. 4) According to conditions of

the EBCS, the subgraph G̃5[S] induced by the node set

S = {v1, v2, v3} is the EBCS and sgb(G̃5[S]) is 20.25.

3.2 Problem Definition

Problem 1. Given an edge-weighted temporal net-

work, a threshold ϕ, and two positive integers k and

sg, we aim to discover the EBCS in G̃x after trans-

forming the snapshot graph Gx into the time weight

graph G̃x by integrating the topological and temporal

information of the network.

4 In-Memory EBCS Discovery Algorithms

In this section, we introduce the solution when the

whole graph can be completely loaded into memory.

Specifically, we first introduce the transformation of

TWG. Then, we design a global search based EBCS

discovery algorithm. Futher, we propose a more effi-

cient local search based EBCS discovery algorithm, in

general, which avoids visiting all nodes.

4.1 In-Memory TWG Transformation

Algorithm

The in-memory TWG transformation algorithm

(IMTA) in Algorithm 1 implements the transformation

of edge-weighted snapshot graphs to the TWG. Specifi-

cally, based on the topology of the graph, the algorithm

first obtains the structure weight of each node at two

different timestamps ti and ti−sg. Then, IMTA calcu-

lates the time weight of each node at ti, which is the

node weight, based on the given sg.

Algorithm 1. IMTA(sg, Gi, Gi−sg)

1: Calculate sumi(v) and sumi−sg(v) for all v ∈ V ;
2: for each v ∈ V do

3: Calculate twni(v);

4: if twni(v) < 0 then
5: Remove v from Gi;

6: Sort V (i) in descending order according to twni(v) for all

v ∈ V (i);
7: for each v ∈ V (i) do

8: TWG node table ← v, deg
G̃i

(v), twni(v);

9: TWG edge table ← v, nbr
G̃i

(v);
10: return TWG;

The IMTA algorithm first loads Gi and Gi−sg into

memory and calculates the structure weights of nodes

separately (line 1). Then, according to Definitions 5

and 6, the algorithm gets the time weights of nodes in

Gi and G̃i in turn (lines 2–5). After getting G̃i, we

need to store it to disk using the node and edge tables

(lines 7–9). Each line of the TWG node table includes

node v ∈ V (i), degG̃i
(v), and twni(v), and each line of

the TWG edge table includes v and nbrG̃i
(v). Besides,

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1343

the order of the nodes in both tables is sorted by time

weights of nodes from the largest to the smallest (line

6).

Theorem 1. The time and space complexities of

the IMTA algorithm are O(3|V |+ 2|E(i)|+ |E(i− sg)|)
and O(2|V |+ |Ei|+ |Ei−sg|) respectively.

Proof. In terms of the processing time, the IMTA

algorithm needs to visit each node v ∈ V , for each v,

it needs to visit degGi(v) or degGi−sg (v) edges, and the

algorithm also needs to visit all the nodes in Gi to calcu-

late the time weight. After getting G̃i, IMTA needs to

visit the whole G̃i to put it into the disk, and thus, the

time complexity is O(3|V |+ 2|E(i)|+ |E(i− sg)|). For

space, IMTA needs to load Gi and Gi−sg, and therefore,

the space complexity is O(2|V |+ |Ei|+ |Ei−sg|). �

4.2 Global Search Based EBCS Discovery

Algorithm

To discover the EBCS in G̃i, we develop the global

search based EBCS discovery algorithm, i.e., GS-EBCS.

According to the definition of EBCS, it is known that

k-core is the main structure of EBCS, and another main

feature is the constraint on the minimum time weight

and the number of nodes. Therefore, the GS-EBCS al-

gorithm first prunes G̃i into a maximum k-core based

on the global search. Next, the nodes with the smallest

time weight will be continuously removed, and finally

the G̃i with the k-core structure is the EBCS.

Optimization. On top of our conference paper [16],

instead of the original method that updates the de-

grees of the remaining nodes every time after a node is

deleted, we develop a batch-deletion strategy to delete

multiple nodes in one batch. In this way, we only need

to update the degrees of the remaining nodes after one

batch-deletion. An important issue in batch-deletion is

to determine the number of deleted nodes in each batch.

Here, we develop two operations, i.e., the multiplication

operation and the in-half operation. For the multipli-

cation operation, we twice the number of deleted nodes

in the next batch, while for the in-half operation, we

remove half of the number of the deleted nodes of this

batch in the next batch.

Specifically, in the first batch, the number of deleted

nodes is 1. And we say the batch-deletion is successful

if the updated subgraph is still a k-core. From the first

batch, if the deletion succeeds in each batch, we will

continue to conduct the multiplication operation un-

til we meet the first failure. When one batch-deletion

fails, which means the remaining nodes fail to form a

k-core after the node deletion, we need to recover the

subgraph by adding the deleted nodes back and invoke

the in-half operation. It is worth noting that, in order

to prevent repeated invalid deletions, once the in-half

operation is invoked for the first time, we will always

conduct the in-half operation for each of the subsequent

batch-deletions. In the end, when there is no node for

deletion, the EBCS is found. The correctness of the

batch-deletion strategy is proved in Theorem 2.

Theorem 2. Using the batch-deletion approach can

successfully find the EBCS.

Proof. The discovery of the EBCS using the batch-

deletion strategy can be divided into two cases. Firstly,

the deletion fails in the first batch, i.e., del num is 1.

At this time, the EBCS is the k-core before performing

the node deletion operation. Secondly, the deletion fails

in a batch greater than 1. Failure is bound to occur be-

cause the multiplication operation cannot be executed

all the time. And the EBCS must be included in the

subgraph before the execution of this failed batch.

We assume that the deletion fails in the (p + 1)-

th batch, where p > 1, and then the number of

deleted nodes in the (p + 1)-th batch is 2p, which

means that after the p-th batch-deletion, we are able to

find the EBCS by deleting a certain number of nodes

between 0 and 2p − 1. Because subsequent batch-

deletions will only perform the in-half operation, the

number of deleted nodes since the (p + 2)-th batch is

2(p−1), 2(p−2), 2(p−3), . . . , 20, 0, respectively. If we select

at least one unduplicated element from them to sum,

the result will be in the range [0, 2p−1], which indicates

that we can delete any number of nodes between 0 and

2p − 1 in total in subsequent batch-deletions after the

(p + 1)-th batch-deletion. That is, we must be able to

find the EBCS contained in the updated subgraph af-

ter the p-th deletion. Therefore, combining the analysis

of the two situations described above, using the batch-

deletion approach can successfully find the EBCS. �
Specifically, GS-EBCS first determines whether

there is the possibility of the EBCS in G̃i based on

the condition 1 of the EBCS (line 2). If the condition

is satisfied, GetCore() in Algorithm 2 prunes G̃i to a

maximum k-core. This function first removes all nodes

in G̃i whose degrees are less than k (lines 5–7 of Algo-

rithm 2), and then iterates this process until δ(G̃i) > k
(lines 1–8 of Algorithm 2). After getting the maximum

k-core, GS-EBCS calls DeleteNode() several times to

remove nodes with the smallest time weight until no

node can be deleted under the condition of the k-core

structure (lines 7–28 of Algorithm 3).

1344 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

Algorithm 2. GetCore and DeleteNode

1: Procedure GetCore(k, G̃i)
2: update ← true;

3: while uptade do

4: update← false;
5: for each v in G̃i do

6: if deg
G̃i

(v) < k then

7: Remove v from G̃i;

8: update ← true;

9: Procedure DeleteNode(k, G̃i, del num, vmax, vmin)

10: if del num > |V (i)| − k then

11: return G̃i ← ∅;
12: for u← vmin to vmax do

13: Remove u from G̃i; remove all nodes that have the same

twni(u) from G̃i;
14: if the number of removed nodes > del num then

15: break

16: GetCore(k, G̃i);
17: return G̃i;

Since the k-core must have at least k+1 nodes, it is

necessary to determine in DeleteNode() whether |V (i)|
is less than k+ 1 after deleting del num nodes (line 10

of Algorithm 2). When deleting node u, the function

removes all nodes whose time weight is twni(u) (lines

13 and 14 of Algorithm 2), which is to ensure that the

EBCS has the maximum number of nodes (condition 3

of the EBCS).

For the process of the batch-deletion (lines 6–28),

del num indicates the number of deleted nodes, and

each call of DeleteNode() by the algorithm is an exe-

cution of one batch. Line 22 of Algorithm 3 executes

the multiplication operation, and lines 15 and 28 exe-

cute the in-half operation, where flag del is false in-

dicating that subsequent batches will only execute the

in-half operation. When no nodes can be deleted (lines

17–19) or the number of deleted nodes becomes 1 again

(lines 23–25), the EBCS is found.

Example 2. For G̃5 (Fig.2(f)), V (5) = {v1, v3, v2,

v5, v4}. The execution process of GS-EBCS is as fol-

lows.

Step 1: GetCore(2, G̃5) → S = {v1, v3, v2, v4}.
Step 2: DeleteNode(2, G̃5[S], 1, v1, v4) → S =

{v1, v3, v2} (when deleting v4, there are no nodes with

time weight equal to twn5(v4), and thus, no nodes need

to be removed together).

Step 3: DeleteNode(2, G̃5[S], 2, v1, v2) → S = ∅.
Step 4: DeleteNode(2, G̃5[S], 1, v1, v2) → S = ∅.
Step 5: return S = {v1, v3, v2}.
Theorem 3. The time complexity of GS-EBCS is

O(|V (i)|2+6|V (i)|+5|Ẽ(i)|−k2−k
2) and the space complexity

is O(|V (i)|+ |Ẽ(i)|).

Proof. The GS-EBCS algorithm takes O(|V (i)| +
|Ẽ(i)|) time to load G̃i. GetCore(), in the worst case,

needs to delete one node each loop until k + 1 nodes

remain to form the k-core, and thus, the function takes

at most O((k+1+|V (i)|)(|V (i)|−k)+2|Ẽ(i)|
2). For DeleteN-

ode(), it takes at most O(|V (i)|). Therefore, the time

complexity is O(|V (i)|2+6|V (i)|+5|Ẽ(i)|−k2−k
2). Besides,

GS-EBCS needs O(|V (i)|+ |Ẽ(i)|) to store G̃i in mem-

ory. �

4.3 Local Search Based EBCS Discovery

Algorithm

Because the GS-EBCS algorithm is based on global

search, it has to delete more nodes to find the target

subgraph, especially when k is small or the whole graph

is dense. This makes the GS-EBCS algorithm ineffi-

cient. In this subsection, we focus on the local search

for the EBCS and propose the local search based EBCS

algorithm, named as LS-EBCS. This algorithm is more

efficient when the value of k is small or the graph is

dense.

The LS-EBCS algorithm utilizes the idea of expand-

ing and refining. It expands the subgraph from the

nodes with the largest time weight until the algorithm

finds the k-core or all nodes are visited, and then refines

the discovered subgraph to satisfy all constraints of the

EBCS, whose time complexity is optimal. Of course,

if all nodes are visited, then the LS-EBCS algorithm

degenerates to GS-EBCS. In specific, LS-EBCS starts

from the first node in V (i) (V (i) is ordered), and keeps

adding nodes in sequence until the subgraph induced by

these nodes contains a k-core or all nodes are visited.

After that, the algorithm keeps deleting nodes with the

smallest time weight until the EBCS is found, and the

deletion operation is the same as that in lines 6–28 of

Algorithm 3.

In the implementation of Algorithm 4, S is com-

posed of the first k+1 nodes with a degree no less than

k (line 2). To ensure that the EBCS has the maximum

number of nodes, the algorithm adds the nodes with

the same twni(u) and the degree no less than k into S,

where u is the (k + 1)-th node in the current S (lines

3 and 4). If G̃i[S] fails to form a k-core (lines 5 and

6), then the algorithm continues to add nodes to S in

order. Besides whenever the size of G̃i[S] doubles (the

proof that the time complexity of the algorithm can be

minimized when the graph size is increased by a fac-

tor of 2 was shown in [20]) or all nodes are visited, the

algorithm stops adding nodes, and again repeats the

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1345

operations in lines 3–5 (lines 8 and 9). If the expanded

G̃i[S] still does not contain the k-core, the algorithm it-

erates the above expansion process until S contains the

k-core or all nodes are visited (lines 7–11). After get-

ting the k-core, LS-EBCS performs the node deletion

operation of Algorithm 3 (line 12).

Algorithm 3. GS-EBCS(k, ϕ, G̃i)

1: vmax ← first node in V (i);
2: if twni(vmax) < ϕ then

3: return None;

4: flag del ← true;
5: GetCore(k, G̃i)

6: W̃i ← G̃i; /*back up G̃i.*/

7: del num← 1;

8: while true do
9: vmax ← first node in V (i);

10: vmin ← last node in V (i);

11: G̃i ← DeleteNode(k, G̃i, del num, vmax, vmin)
12: if G̃i = ∅ and del num > 1 then

13: G̃i ← W̃i;

14: flag del ← false;
15: del num← del num/2;

16: continue;
17: else if G̃i = ∅ and del num = 1 then

18: G̃i ← W̃i;

19: break;
20: if flag del then

21: W̃i ← G̃i;

22: del num← 2× del num;
23: else if del num = 1 then

24: G̃i ← W̃i;

25: break;
26: else

27: W̃i ← G̃i;

28: del num← del num/2;

29: return V (i);

Algorithm 4. LS-EBCS(k, ϕ, G̃i)

1: Lines 1–3 of Algorithm 3;

2: S ← first k + 1 nodes that deg
G̃i

(v) > k from V (i); /* V (i)

is sorted in descending order. */
3: u← the last added node;

4: Add all nodes that have the same twni(u) and deg
G̃i

(u) > k

to S from V (i);
5: GetCore(k, G̃i[S]);
6: if G̃i[S] = ∅ then

7: while true do
8: Continue to add node v ∈ V (i) that deg

G̃i
(v) > k to S

until size(G̃i[S]) multiplication or no addable node;
9: Reapeat lines 3–5;

10: if G̃i[S] 6= ∅ or no addable node then

11: break;
12: Lines 6–28 of Algorithm 3; /* The processing object of LS-

EBCS is G̃i[S] and S. */

Example 3. Continuing with example 2, the steps of

obtaining G̃5[S] are as follows:

V (5) = {v1, v3, v2, v5, v4};
step 1: S = {v1, v3, v2} (no nodes with time weight

equal to twn5(v2) and size(G̃5[S]) = 6);

step 2: GetCore(2, G̃5[S]) → S = {v1, v3, v2} (no

need to expansion);

step 3: DeleteNode(2, G̃5[S], 1, v1, v2) → S = ∅;
step 4: return S = {v1, v3, v2}.
The biggest difference between LS-EBCS and GS-

EBCS is the way of finding the k-core.

Theorem 4. The time complexity of the LS-EBCS

algorithm is

O(l
2k2+3(l2k+lk2)+2l2−3kl−10l−4+7(|V (i)|+|Ẽ(i)|)

4).

And the space complexity is O(|V (i)|+ |Ẽ(i)|).

Proof. Let l denote the number of expansions and

S
′

denote the set of nodes after one expansion. In

the worst case, each expansion requires adding twice as

many nodes of itself, and since these nodes still do not

form a k-core, these nodes have at most (k×|S′ |/2)−1

edges. Each time, GetCore() visits all nodes and edges,

and thus, it takes at most O(l(k+1)(l+1)(k+2)−4l
4) to ex-

ecute GetCore() l times. DeleteNode() takes at most

O(l(k + 1)) time. And the algorithm takes O(|V (i)| +
|Ẽ(i)|) time to load G̃i. Therefore, the time complexity

is O(l
2k2+3(l2k+lk2)+2l2−3kl−10l−4+8(|V (i)|+|Ẽ(i)|)

4). The

space complexity is the same as that of the GS-EBCS. �

5 I/O Efficient EBCS Discovery Algorithms

The space complexity of both GS-EBCS and LS-

EBCS is O(|V (i)| + |Ẽ(i)|). Both nodes and edges are

loaded in memory. However, when dealing with massive

graphs, the reality is that the memory space is limited,

and the number of edges of the graph is generally much

larger than the number of nodes. Therefore, in this sec-

tion, to solve the problem that massive graphs cannot

be completely put into memory, we propose the I/O

algorithms based on the semi-external model. For all

I/O algorithms, we set τ to denote the average time

required to load or write nbrG̃i
(v) (nbrG̃i−sg

(v)) and B

to denote the disk block size.

The semi-external model in this paper allows only

node information to be resident in memory, and only

the connected edges of one node will be loaded at a

time. This approach is very effective in reducing the

memory usage of massive graphs with a space comple-

xity of O(|V |). In the following, we first introduce the

TWG transformation algorithm using I/O in Subsec-

tion 5.1, and the I/O-GS algorithm based on the global

idea is introduced in Subsection 5.2. In order to further

reduce the I/O cost and memory occupation of I/O-GS

1346 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

and improve the efficiency of discovering the EBCS in

massive temporal networks, we propose the I/O-LS al-

gorithm based on the idea of expanding and refining in

Subsection 5.3.

5.1 I/O TWG Transformation Algorithm

For the transformation of the TWG using the semi-

external model, we only load V from disk and only load

the relevant information when the neighbor nodes of

node u ∈ V need to be loaded. Therefore, we develop

the TWG transformation algorithm based on the semi-

external model (SETA) in Algorithm 5.

Algorithm 5. SETA(sg, Gi on disk, Gi−sg on disk)

1: V ← load node table of Gi from disk; /* All snapshot graphs

have the same V . */
2: for each v ∈ V do

3: Load nbr
G̃i

(v) and associated edge weights from disk;

4: Load nbr
G̃i−sg

(v) and associated edge weights from disk;

5: Calculate sumi(v) and sumi−sg(v);

6: Lines 2–6 of Algorithm 1;
7: for each v ∈ V (i) do

8: Load nbr
G̃i

(v) from disk;

9: nbr
G̃i

(v)← nodes of nbr
G̃i

(v) ∈ V (i);

10: TWG node table ← v, |nbr
G̃i

(v)|, twni(v);

11: TWG edge table ← v, nbr
G̃i

(v);

12: return TWG;

Since all snapshot graphs have the same V , al-

though the transformation of TWG involves two snap-

shot graphs, memory only needs space for one |V | (line

1). Specifically, the algorithm visits each v ∈ V and

loads nbrGi
(v) and nbrGi−sg

(v) from the disk along with

the corresponding edge weight information (lines 2–4),

and next, computes the structure weight (line 5). After

that, the algorithm obtains G̃i (line 6). When writ-

ing G̃i to the disk, SETA also loads a node’s neighbor

nodes from the edge table of Gi when needed (line 8),

and then, removes those nodes that are not in G̃i (line

9). Similarly, the order of the nodes in both tables is

sorted by the time weight of nodes from the largest to

the smallest.

Theorem 5. The time, I/O, and space com-

plexities of the SETA algorithm are O(|V |(4τ + 3)),

O(2|V |+4max{|E(i)|,|E(i−sg)|}
B) and O(|V |) respectively.

Proof. SETA requires loading V and two snap-

shot graphs, which takes O(|V | + 2|V |τ). Obtaining

G̃i takes O(|V |) and writing G̃i to disk takes at most

O(|V | + 2|V |τ). Therefore, the time complexity is

O(|V |(4τ + 3)). For I/O complexity, the algorithm re-

quires O((|V |+|E(i)|+|E(i−sg)|)
B) when loading snapshot

graphs. And it also needs to load neighbor nodes from

disk first each time when it writes to disk, which takes

O(|V (i)|+2|Ẽ(i)|
B), and thus, the I/O complexity is no

more than O(2|V |+4max{|E(i)|,|E(i−sg)|}
B). Because the

semi-external model only allows V in memory, the space

complexity is O(|V |). �

5.2 I/O Global Search Based Discovery

Algorithm

In this subsection, we develop the I/O-GS algo-

rithm. I/O-GS is also based on the idea of the global

search for the maximum k-core and the batch-deletion.

But there is only node information in memory, includ-

ing node v, degG̃i(v)
and twni(v).

The I/O-GS algorithm (Algorithm 6) contains three

functions (lines 10–36). UpdateDegree() is to update the

degrees of the nodes, and GetCore+() has the same role

as GetCore() to discover the k-core, and DeleteNode+()

is used to delete nodes with the smallest time weight.

Specifically, the I/O-GS algorithm loads all the node

information from the disk into memory (line 1). Sim-

ilarly, after determining whether G̃i satisfies condition

1 of the EBCS (line 4), the algorithm calls GetCore+()

to find the maximum k-core.

In GetCore+(), after each round of removing nodes

with a degree less than k, the algorithm updates the re-

maining nodes in G̃i with UpdateDegree() (lines 17–24).

This function visits each deleted node v and then loads

nbrG̃i
(v) from disk (line 12). For each u ∈ nbrG̃i

(v)

and u ∈ V (i), degG̃i
(u) is reduced by 1 due to the

loss of a neighbor node v (lines 13–15). After getting

the maximum k-core, the I/O-GS algorithm needs to

call DeleteNode+() to delete nodes with the smallest

time weight and finds the EBCS. And the deletion is

described in Algorithm 2 and Algorithm 3.

Theorem 6. The time complexity of I/O-GS

is O(|V (i)|2+(5+2τ)|V (i)|+2|Ẽ(i)|−k2−k−2τk
2), and the I/O

and space complexities are O(|V (i)|+|Ẽ(i)|
B) and O|V (i)|

respectively.

Proof. The I/O-GS algorithm takes O(|V (i)|) to

load the node table of G̃i. Compared with the GS-

EBCS algorithm, I/O-GS needs more time to load edges

from disk in finding k-core and deleting nodes, and

thus, the time complexity of I/O-GS does not exceed

O(|V (i)|2+(5+2τ)|V (i)|+2|Ẽ(i)|−k2−k−2τk
2). Because the

algorithm loads only V (i) and needs to load nbrG̃i
(u)

from the disk for each removed node u, the I/O comple-

xity is O(|V (i)|+|Ẽ(i)|
B). Besides, it is clear that the space

complexity of the I/O-GS is O|V (i)|. �

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1347

Algorithm 6. I/O-GS(k, ϕ, G̃i on disk)

1: Load all nodes’ information from disk; /* V (i) is sorted in

descending order. */
2: twni(v), deg

G̃i
(v)← for all v ∈ V (i);

3: vmax, vmin ← first node, last node in V (i);

4: if twni(vmax) < ϕ then
5: return None;

6: flag del ← true;

7: GetCore+(k, V (i), deg
G̃i

);

8: Lines 6–28 of Algorithm 3. /* The difference in this algo-

rithm is that I/O-GS backs up the nodes. DeleteNode() is

changed to DeleteNode+(). */
9: return V (i);

10: Procedure UpdateDegree(k, S, V (i), deg
G̃i

)

11: for each v ∈ S do
12: Load nbr

G̃i
(v) from disk;

13: for each u ∈ nbr
G̃i

(v) do

14: if u ∈ V (i) then
15: deg

G̃i
(u)← deg

G̃i
(u)− 1;

16: Procedure GetCore+(k, V (i), deg
G̃i

)

17: update ← true;

18: while uptade do
19: update ← false; S ← ∅;
20: for each v ∈ V (i) do

21: if deg
G̃i

(v) < k then

22: Remove v from V (i);

23: update ← true; S ← S ∪ {v}
24: UpdateDegree(k, S, V (i), deg

G̃i
)

25: Procedure DeleteNode+(k, V (i), deg
G̃i

, twni, del num,

vmax, vmin)

26: S ← ∅;
27: if del num > |V (i)| − k then
28: return V (i)← ∅;
29: for u← vmin to vmax do

30: Remove u from V (i); remove all nodes that have the same
twni(u) from V (i);

31: S ← deleted nodes;

32: if |S| > del num then
33: break;

34: UpdateDegree(k, S, V (i), deg
G̃i

);

35: GetCore+(k, V (i), deg
G̃i

);

36: return V (i);

5.3 I/O Local Search Based Discovery

Algorithm

Although I/O-GS can handle massive temporal net-

works, it still needs to load all node information into

memory, and most of the nodes also need to load edges,

which leads to high I/O cost. In fact, the definition of

the EBCS indicates that when k is less than the maxi-

mum k of the graph and the graph is dense, the EBCS

is among the top-ranked nodes of V (i), and thus, it is

unnecessary to load all the nodes for the I/O method.

Therefore, in order to reduce the I/O cost and memory

occupation of I/O-GS and improve the efficiency of dis-

covering the EBCS, we propose the I/O-LS algorithm.

The I/O-LS algorithm follows the idea of expand-

ing and refining, but the difference is that I/O-LS can

load directly into memory starting from node v with the

maximum time weight until T containing the k-core is

found. This makes I/O-LS a great reduction in time,

memory and I/O consumption.

Specifically, Algorithm 7 first loads the node infor-

mation of the first row of the node table from disk,

which includes the largest time weight (line 1). If the

time weight of this node is less than ϕ (not satisfying

condition 1 of the EBCS), the algorithm exits (lines

2 and 3). Instead, the algorithm gradually loads the

nodes from disk and starts to expand.

Algorithm 7. I/O-LS(k, ϕ, G̃i on disk)

1: v ← load the first node from disk;

2: if twni(v) < ϕ then
3: return None;

4: T ← load the first k + 1 nodes with a degree no less than k

from disk;
5: u← the last loaded node;

6: Load all nodes that have the same twni(u) and deg
G̃i

(u) > k

to T from disk;
7: GetCore+(k, T , deg

G̃i
);

8: if T = ∅ then
9: while true do

10: Continue to load node v that deg
G̃i

(v) > k to T from

disk until size(G̃i[T]) multiplication or no addable

node;
11: u← the last loaded node;

12: Load all nodes to T from disk that have the same

twni(u);
13: GetCore+(k, T , deg

G̃i
);

14: if T 6= ∅ or no addable node then

15: break;
16: flag del← true;

17: Lines 8 and 9 of Algorithm 6;

Because the I/O-LS algorithm is consistent with LS-

EBCS in terms of the execution method, the analysis of

the specific expansion is shown in Algorithm 4, and the

analysis of the batch-deletion is shown in Algorithm 6.

Theorem 7. The time complexity of I/O-LS is

O(l
2k2+3(l2k+lk2)+2l2(τk+τ+1)+6lτ(k+1)−3l(k+10)−4

4), and

the I/O and space complexities of the I/O-LS algorithm

are O(l
2k2+3lk2+l2k+7lk−4

4B) and O(|lk + l|) respectively.

Proof. In the first (l − 1) expansions, GetCore+()

deletes all nodes, and then loads the neighborhood

nodes of each deleted node from disk and visits their

connected edges by UpdateDegree(). After the l-th ex-

pansion, the algorithm keeps the EBCS containing at

least k + 1 nodes, and thus, the time complexity is

O(l
2k2+3(l2k+lk2)+2l2(τk+τ+1)+6lτ(k+1)−3lk−10l−4

4).

For I/O complexity, the algorithm loads a node or

deletes a node by loading its neighborhood nodes from

1348 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

disk. In the first (l − 1) times, GetCore+() deletes

all nodes of the expansion, and in the l-th, the algo-

rithm deletes at most l(k + 1) nodes, and thus, the

total I/O complexity is O(l
2k2+3lk2+l2k+7lk−4

4B). The

algorithm loads at most l(k + 1) nodes, and thus, it

requires O(lk + l) space. �

6 Performance Studies

In this section, we conduct extensive experiments

and evaluate the efficiency and effectiveness of our pro-

posed algorithms, i.e., IMTA, SETA, GS-EBCS, LS-

EBCS, I/O-GS and I/O-LS. All algorithms are im-

plemented in Python 3.8 under JetBrains PyCharm

2021. All the experiments are conducted on a com-

puter with Windows 10 Professional operating system,

Intelr CoreTM i5-7200 CPU with 2.5 GHz, 12 G RAM,

and 1 T hard disk.

We evaluate the in-memory algorithms and the I/O

efficient algorithms with different settings. All experi-

ments of the in-memory algorithms are performed in the

above environment. In order to evaluate the I/O algo-

rithms, we manually set a small memory capacity for

the tests in the above environment, so that the tested

graphs cannot be completely loaded into memory.

6.1 Experimental Setup

Datasets. We use four real datasets. The statistical

information is shown in Table 1.

Table 1. Dataset Statistics

Dataset |V | |E| SG TS MC

LKML 1○ 27 937 1 096 440 98 Month 5

MCB 2○ 76 556 856 956 139 Day 7

DBLP 3○ 1 727 220 14 719 227 46 Year 250

YTB 4○ 3 223 589 12 223 774 202 Day 500

Note: TS denotes the unit of the timestamp, SG denotes the
number of snapshot graphs contained in a temporal network,
and MC denotes the artificially set upper limit of the memory
capacity (MB) for datasets in I/O experiments.

LKML 1○ is a temporal communication network of

the Linux kernel mailing list: each edge in the snapshot

graph indicates that users v and u have contacted each

other via email during this month, and the edge weight

is the number of exchanged emails. The largest snap-

shot graph has 4 449 edges and the maximum k value

for the k-core is 15.

Microblog 2○ (MCB for short) is a temporal seman-

tic network: each edge in the snapshot graph represents

that words v and u, the nodes that the edge connects,

occur together in a sentence, and the edge weight is the

percentage of occurrence. The largest snapshot graph

has 11 980 edges and the maximum k value for the k-

core is 15.

DBLP 3○ is an author collaboration temporal net-

work: each edge in the snapshot graph denotes that

authors v and u, the nodes that the edge connects, have

collaborated relation during this year, and the edge

weight is the number of collaborations. The largest

snapshot graph has 1 222 656 edges and the maximum

k value for the k-core is 98.

YouTube 4○ (YTB for short) is a friendship network

of users on YouTube: each edge in the snapshot graph

denotes that users v and u, the nodes that the edge

connects, interacted on this day. The largest snapshot

graph has 1 368 340 edges and the maximum k value for

the k-core is 12.

Parameters. In all experiments, the specific para-

meters include region value sg, core number k and

threshold ϕ. sg denotes the value of the sliding-

windows, which affects the number of TWGs in the

dataset. In order to focus time on bursting information

worthy of attention, we filter some unimportant TWGs

by an artificially given threshold ϕ. The total number

of TWGs and the number of filtered TWGs for diffe-

rent datasets under these two parameters are given in

Table 2.

Table 2. Number of Filtered TWGs and TWGs

Dataset sg ϕ Number of Filtered TWGs/

Number of All TWGs

LKML 1○ 2 25 290.56 31/96

3 14 324.57 23/95

MCB 2○ 4 8.56×10−5 50/135

7 4.36×10−5 34/132

DBLP 3○ 2 294.15 13/44

3 506.07 14/43

YTB 4○ 4 33 384.87 56/198

7 16 292.91 38/195

Memory Capacity. Under the assumption of the

semi-external model, all I/O algorithms are performed

1○http://konect.uni-koblenz.de, Jul. 2020.
2○https://www.weibo.com, May 2020.
3○http://dblp.uni-trier.de/xml/, Jul. 2020.
4○http://snap.stanford.edu/data/index.html, Jul. 2020.

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1349

under the condition that the memory capacity is

capped, which ensures that the node information of the

tested graph can be fully loaded into memory, but not

all edges. The MC in Table 1 gives specific information

on the memory capacity set for each dataset.

6.2 Efficiency Testing

Exp-1: Efficiency of IMTA and SETA. We com-

pare the two TWG transformation algorithms by the

running time and the memory usage. All experiments

were performed on the respective largest TWG of each

dataset with maximum sg and ϕ = 0, where sg is shown

in Table 2. The experimental results in Fig.3(a) show

that the running time of the IMTA algorithm is lower

than that of the SETA algorithm, because SETA in-

volves many I/O read/write operations. However, on

the memory usage shown in Fig.3(b), the consumption

of the IMTA algorithm is too high when processing the

massive snapshot graph. In contrast, the memory us-

age of the SETA algorithm is essentially half that of

the IMTA algorithm under the same parameters, which

demonstrates the effectiveness of designing algorithms

using the semi-external model. In general, SETA is

still more suitable for dealing with massive temporal

networks.

Exp-2: Efficiency of GS-EBCS and LS-EBCS. In

this experiment, we elaborate the efficiency of the two

in-memory algorithms on the four datasets with diffe-

rent parameters. Table 3 presents the running time of

the two algorithms. Since each dataset forms a vary-

ing number of TWGs at a given sg, the running time

is the total time required by the algorithm to process

all TWGs, where ϕ is 0 to indicate that no TWG is fil-

tered. From the experimental results in Table 3, we can

see that the LS-EBCS algorithm outperforms the GS-

EBCS algorithm when k is far from the maximum k of

the tested graph, especially in MCB. This is the result

obtained by the idea of the LS-EBCS algorithm and the

denseness of the TWG. When k is smaller and the TWG

is denser, the LS-EBCS algorithm needs to expand only

a few times to obtain the set of nodes containing the

EBCS. In addition, we can see that the GS-EBCS algo-

rithm is faster than the LS-EBCS algorithm when the

value of k is very close to the maximum k of the TWG

LKML MCB DBLP YTB LKML MCB DBLP YTB

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

 IMTA

 SETA

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

213

212

211

210

29

28

27

26

25

24

23

22

21

20

 IMTA
 SETA

(b)(a)

Fig.3. Efficiency results of IMTA and SETA. (a) Running time. (b) Memory usage.

Table 3. Running Time (s) of In-Memory Algorithms with Varying Parameters for Different Datasets

Dataset sg ϕ k = 3 k = 6 k = 9 k = 12 k = 29 k = 52 k = 75

LS GS LS GS LS GS LS GS LS GS LS GS LS GS

LKML 2 0 0.631 2.643 1.192 1.511 1.530 1.216 1.342 0.989 - - - - - -

3 0 0.769 2.678 1.184 1.610 1.546 1.229 1.432 1.001 - - - - - -

MCB 4 0 1.127 11.605 1.754 5.063 2.903 3.245 3.134 2.627 - - - - - -

7 0 1.225 16.345 1.791 5.399 2.971 3.458 3.293 2.842 - - - - - -

YTB 4 0 55.098 100.742 69.392 69.806 73.174 67.049 70.974 64.053 - - - - - -

7 0 65.279 101.718 75.144 101.132 78.570 73.502 82.715 69.311 - - - - - -

DBLP 2 0 - - 16.213 107.533 - - - - 16.017 28.892 17.936 15.871 19.080 9.231

3 0 - - 16.851 108.989 - - - - 18.536 29.435 19.449 15.120 21.020 11.066

Note: The running time marked in bold indicates that the algorithm runs in a shorter time under the current parameters. Besides, LS
and GS denote LS-EBCS and GS-EBCS, respectively.

1350 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

or the TWG is sparse, i.e., the result on the LKML and

YTB. This is because, in the above cases, the LS-EBCS

algorithm has to increase the subgraph size by expand-

ing frequently. In the worst case, the subgraph contains

all nodes of the TWG, and then the LS-EBCS algorithm

degenerates into the GS-EBCS algorithm. Thus, the

whole process of LS-EBCS takes more time than that

of the GS-EBCS algorithm. For YTB, the maximum

k-core of the largest snapshot graph is 12, the maxi-

mum core of most snapshot graphs does not exceed 6,

and thus, the whole network is very sparse. This leads

to the result of the LS-EBCS algorithm for YTB in

Table 3.

To show more clearly the comparison between two

in-memory algorithms, we conduct experiments on the

respective largest TWG for each dataset under Exp-1

conditions. As shown in Figs.4(a)–4(d), we can clearly

see the variation of running time over two algorithms as

the value of k. It is worth noting that the running time

of the LS-EBCS algorithm does not increase linearly

with k, for example, Fig.4(c).

This is because the running time of LS-EBCS is af-

fected by the number of extensions. The fewer the ex-

tensions are needed, the fewer the nodes are added, and

then the shorter the running time of the algorithm has.

Also the number of expansions is affected by the initial

number of nodes, for example, when k equals 6, the

initial number of nodes is 7.

From Fig.4(a), we can see the effect of k close to

the maximum k on the LS-EBCS algorithm. By com-

paring Figs.4(a)–4(d), we can also find the effect of the

sparsity of the graph on LS-EBCS.

In general, the LS-EBCS algorithm is more efficient

than the GS-EBCS algorithm in most cases. Only in

extreme cases, for example, when k is very close to the

maximum k of the graph or the graph is very sparse,

the GS-EBCS algorithm outperforms LS-EBCS.

Exp-3: Efficiency of I/O Algorithms. We test the

efficiency of the two I/O EBCS discovery algorithms in

detail based on the parameters in Exp-2, mainly com-

paring the running time and I/O cost of the algorithms,

where I/O cost refers to the number of load (write)

operations executed by the algorithm. The specific ex-

perimental information is shown in Table 4 and Fig.5.

12 153 6 9 12 153 6 9
10-4

10-3

10-2

10-1

100

101

102

103

k

T
im

e
 C

o
st

 (
s)

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

 LS-EBCS GS-EBCS

k

 LS-EBCS GS-EBCS

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

75 986 29 52 10 124 6 8

k k

 LS-EBCS GS-EBCS LS-EBCS GS-EBCS

(b)(a)

(c) (d)

Fig.4. Efficiency results of two in-memory algorithms on the respective largest TWG for each dataset. (a) LKML. (b) MCB. (c)
DBLP. (d) YTB.

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1351

Table 4. Running Time (s) of I/O Algorithms with Varying Parameters for Different Datasets

Dataset sg ϕ k = 3 k = 6 k = 9 k = 12 k = 29 k = 52 k = 75

I/O-LS I/O-GS I/O-LS I/O-GS I/O-LS I/O-GS I/O-LS I/O-GS I/O-LS I/O-GS I/O-LS I/O-GS I/O-LS I/O-GS

LKML 2 0 0.627 5.098 3.426 2.778 6.605 1.500 7.001 1.071 - - - - - -

3 0 0.745 5.814 3.537 2.899 6.755 1.649 7.022 1.891 - - - - - -

MCB 4 0 0.511 54.591 2.388 13.660 6.688 4.710 10.543 2.540 - - - - - -

7 0 0.646 55.801 2.233 15.827 7.754 5.316 10.909 3.107 - - - - - -

YTB 4 0 49.034 147.029 240.981 75.658 327.860 67.290 363.931 66.763 - - - - - -

7 0 53.097 165.126 241.247 76.360 360.003 70.942 368.074 70.322 - - - - - -

DBLP 2 0 - - 0.685 195.527 - - - - 16.233 35.546 45.328 17.774 89.071 12.106

3 0 - - 1.024 207.630 - - - - 19.140 38.360 51.466 18.518 109.847 13.398

From the results, we can find that I/O algorithms gene-

rally consume more time than in-memory algorithms,

especially I/O-GS. This is due to the fact that the I/O

algorithms require constant loading from and writing

to disk. Moreover, the results of Fig.5 clearly demon-

strate the advantages of the I/O-LS algorithm over the

I/O-GS algorithm in terms of the running time and the

I/O cost when k is very small or the graph is dense. Be-

cause the main idea of the I/O algorithms is the same

as that of the in-memory algorithms, the specific data

analysis is not repeated.

To further demonstrate the advantages of I/O algo-

rithms in terms of memory usage, we record the maxi-

mum memory usage of the in-memory EBCS discov-

ery algorithms and the I/O EBCS discovery algorithms

under Exp-1 conditions respectively. We also give the

I/O cost of the SETA algorithm to to build the tested

TWGs of Fig.5. And the experimental results are shown

in Fig.6. From Fig.6(a), we can further see the advan-

tages of the I/O algorithms, especially I/O-LS.

Discussion. There is an interesting phenomenon

in the results of Table 3 and Table 4. That is, when

k is small, the I/O-LS algorithm runs faster than the

in-memory LS-EBCS algorithm. The reasons are two

folds. Firstly, the I/O-LS algorithm loads only a very

small number of nodes into memory in this case, and

thus, the algorithm is processed efficiently. Secondly,

LS-EBCS still needs to load all the nodes and edges

into memory.

6.3 Effectiveness Testing

Exp-4: Effectiveness of the EBCS. We use the graph

diameter metric [33] to test the effectiveness of the

EBCS found by our proposed algorithms. The graph

diameter is defined as the maximum value of the short-

est path between any two nodes in the graph. From this

definition, we can see that the smaller the diameter of

the graph is, the denser the graph is.

Fig.7 gives the diameters of the found EBCS, and

we can see that most of the results for the diameter are

small, which indicates that the EBCS is cohesive and

our algorithms are effective.

Exp-5: Case Study on MCB. Microblog 5○ is a social

platform for sharing real-time information. For MCB,

this paper collects information posted by 128 trustwor-

thy media agencies from December 1, 2019 to April 17,

2020. To illustrate the real-world application of the

EBCS, we set k = 5, sg = 7 and ϕ = 0, and then we

find a real bursting event on the MCB that occurred

on December 31, 2019. Fig.8 gives the EBCS model of

this event in the temporal network, and from “image”

we can see that the pneumonia of the unknown cause

has appeared in Wuhan city. Our model represents this

event in a timely and efficient manner, which indicates

that it is significant to find the EBCS in temporal net-

works.

7 Conclusions

In this work, we studied the problem of identifying

EBCS from temporal networks. Extensive experiments

showed that the I/O-GS and I/O-LS algorithms had

comparable runtime with that of GS-EBCS and LS-

EBCS, respectively, while the maximum memory usage

is much smaller. Further, we found that the global

search based methods, GS-EBCS and I/O-GS are more

suitable for the situation when the temporal networks

are sparse and the value of k is large, while the local

search based methods, LS-EBCS and I/O-LS, have bet-

ter performance when the temporal networks are dense

and the value of k is small. In the future, we plan to

implement the discovery of the EBCS in the distributed

frameworks such as Hadoop and Spark.

5○https://www.weibo.com, Jul. 2021

1352 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

 I/O-LS I/O-GS

I/
O

 I/O-LS I/O-GS

 I/O-LS I/O-GS I/O-LS I/O-GS

 I/O-LS I/O-GS I/O-LS I/O-GS

 I/O-LS I/O-GS I/O-LS I/O-GS

10-4

10-3

10-2

10-1

100

101

102

103

100

101

102

103

104

105

106

107

T
im

e
 C

o
st

 (
s)

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 C

o
st

 (
s)

I/
O

100

101

102

103

104

105

106

107

I/
O

100

101

102

103

104

105

106

107

I/
O

100

101

102

103

104

105

106

107

12 153 6 9 12 153 6 9

k k

(b)(a)

12 153 6 9 12 153 6 9

k k

(d)(c)

75 986 29 52 75 986 29 52

k k

(e) (f)

10 124 6 8
k

(g)

10 124 6 8
k

(h)

Fig.5. Efficiency results of I/O algorithms. (a), (c), (e), (g) Running time on LKML, MCB, DBLP and YTB respectively. (b), (d),
(f), (h) I/O cost on LKML, MCB, DBLP and YTB respectively.

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1353

LKML MCB DBLP YTB LKML MCB DBLP YTB

 I/O-LS

 I/O-GS

 LS-EBCS

 GS-EBCS

103

104

105

106

107

I/
O

M
e
m

o
ry

 U
sa

g
e
 (

M
B

) 212

210

28

26

24

22

20

(b)(a)

Fig.6. Maximum memory usage of four algorithms and the I/O cost of SETA. (a) Maximum memory usage. (b) I/O cost.

2

3 3 3 3

0

1

2

3

4

5

D
ia
m
e
te
r

2 2 2

3 3

0

1

2

3

4

5

D
ia
m
e
te
r

4

2 2 2 2

0

1

2

3

4

5

D
ia
m
e
te
r

5

4 4 4 4

0

1

2

3

4

5

D
ia
m
e
te
r

12 153 6 9 12 153 6 9

k k

75 986 29 52 10 124 6 8

k k

(b)(a)

(c) (d)

Fig.7. Graph diameters of the EBCS found by the algorithms on the respective largest TWG for each dataset. (a) LKML. (b) MCB.
(c) DBLP. (d) YTB.

Pneumonia

Unidentified

Wuhan

Wuhan City

Cause

Unkonwn

Fig.8. A real EBCS case in MCB.

References

[1] Holme P, Saramäki J. Temporal networks. Physics Reports,

2012, 519(3): 97-125. DOI: 10.1016/j.physrep.2012.03.001.

[2] Li R H, Su J, Qin L, Yu J X, Dai Q. Persistent commu-

nity search in temporal networks. In Proc. the 34th IEEE

International Conference on Data Engineering, Apr. 2018,

pp.797-808. DOI: 10.1109/ICDE.2018.00077.

[3] Semertzidis K, Pitoura E, Terzi E, Tsaparas P. Finding

lasting dense subgraphs. Data Min. Knowl. Discov., 2019,

33(5): 1417-1445. DOI: 10.1007/s10618-018-0602-x.

[4] Qin H, Li R H, Wang G, Huang X, Yuan Y, Yu J X. Min-

ing stable communities in temporal networks by density-

based clustering. IEEE Trans. Big Data, 2022, 8(3): 671-

684. DOI: 10.1109/TBDATA.2020.2974849.

https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1109/ICDE.2018.00077
https://doi.org/10.1007/s10618-018-0602-x
https://doi.org/10.1109/TBDATA.2020.2974849

1354 J. Comput. Sci. & Technol., Nov. 2022, Vol.37, No.6

[5] Lin L, Yuan P, Li R, Jin H. Mining diversified top-r lasting

cohesive subgraphs on temporal networks. IEEE Transac-

tions on Big Data. DOI: 10.1109/TBDATA.2021.3058294.

[6] Li Y, Liu J, Zhao H, Sun J, Zhao Y, Wang G. Effi-

cient continual cohesive subgraph search in large temporal

graphs. World Wide Web, 2021, 24(5): 1483-1509. DOI:

10.1007/s11280-021-00917-z.

[7] Qin H, Li R H, Wang G, Qin L, Cheng Y, Yuan Y. Min-

ing periodic cliques in temporal networks. In Proc. the 35th

IEEE International Conference on Data Engineering, Apr.

2019, pp.1130-1141. DOI: 10.1109/ICDE.2019.00104.

[8] Zhang Q, Guo D, Zhao X, Li X, Wang X. Seasonal-

periodic subgraph mining in temporal networks. In Proc.

the 29th ACM International Conference on Information

and Knowledge Management, Oct. 2020, pp.2309-2312.

DOI: 10.1145/3340531.3412091.

[9] Qin H, Li R H, Wang G, Qin L, Yuan Y, Zhang Z. Min-

ing bursting communities in temporal graphs. arXiv:191-

1.02780, 2019. https://arxiv.org/abs/1911.02780, Jul. 2022.

[10] Chu L, Zhang Y, Yang Y, Wang L, Pei J. Online den-

sity bursting subgraph detection from temporal graphs.

Proc. VLDB Endow., 2019, 12(13): 2353-2365. DOI:

10.14778/3358701.3358704.

[11] Palen L, Hughes A L. Social media in disaster commu-

nication. In Handbook of Disaster Research, Rodŕıguez

H, Donner W, Trainor J E (eds.), Springer Cham, 2018,

pp.497-518. DOI: 10.1007/978-3-319-63254-4 24.

[12] Jain V, Sharma A, Subramanian L. Road traffic congestion

in the developing world. In Proc. the 2nd ACM Symposium

on Computing for Development, Mar. 2012, Article No. 11.

DOI: 10.1145/2160601.2160616.

[13] Cooper I, Mondal A, Antonopoulos G C. A SIR model as-

sumption for the spread of COVID-19 in different commu-

nities. Chaos, Solitons & Fractals, 2020, 139: Article No.

110057. DOI: 10.1016/j.chaos.2020.110057.

[14] Barbieri N, Bonchi F, Galimberti E, Gullo F. Efficient

and effective community search. Data Min. Knowl. Discov.,

2015, 29(5): 1406-1433. DOI: 10.1007/s10618-015-0422-1.

[15] Cui W, Xiao Y, Wang H, Wang W. Local search of commu-

nities in large graphs. In Proc. the 2014 ACM SIGMOD In-

ternational Conference on Management of Data, Jun. 2014,

pp.991-1002. DOI: 10.1145/2588555.2612179.

[16] Dai J, Li Y, Fan X, Sun J, Zhao Y. Finding early

bursting cohesive subgraphs in large temporal networks.

In Proc. the 2021 IEEE SmartWorld, Ubiquitous Intelli-

gence & Computing, Advanced & Trusted Computing, Scal-

able Computing & Communications, Internet of People

and Smart City Innovation, Oct. 2021, pp.264-271. DOI:

10.1109/SWC50871.2021.00044.

[17] Li R H, Qin L, Yu J X, Mao R. Influential community search

in large networks. Proc. VLDB Endow., 2015, 8(5): 509-

520. DOI: 10.14778/2735479.2735484.

[18] Li R, Qin L, Yu J X, Mao R. Finding influential commu-

nities in massive networks. VLDB J., 2017, 26(6): 751-776.

DOI: 10.1007/s00778-017-0467-4.

[19] Chen S, Wei R, Popova D, Thomo A. Efficient computation

of importance based communities in web-scale networks us-

ing a single machine. In Proc. the 25th ACM International

Conference on Information and Knowledge Management,

Oct. 2016, pp.1553-1562. DOI: 10.1145/2983323.2983836.

[20] Bi F, Chang L, Lin X, Zhang W. An optimal and progres-

sive approach to online search of top-k influential commu-

nities. Proc. VLDB Endow., 2018, 11(9): 1056-1068. DOI:

10.14778/3213880.3213881.

[21] Zheng Z, Ye F, Li R H, Ling G, Jin T. Finding weighted

k-truss communities in large networks. Inf. Sci., 2017, 417:

344-360. DOI: 10.1016/j.ins.2017.07.012.

[22] Sun L, Huang X, Li R, Choi B, Xu J. Index-based intimate-

core community search in large weighted graphs. IEEE

Trans. Knowl. Data Eng., 2022, 34(9): 4313-4327. DOI:

10.1109/TKDE.2020.3040762.

[23] Lahiri M, Berger-Wolf T F. Mining periodic behavior in dy-

namic social networks. In Proc. the 8th IEEE International

Conference on Data Mining, Dec. 2008, pp.373-382. DOI:

10.1109/ICDM.2008.104.

[24] Qin H, Li R, Yuan Y, Wang G, Yang W, Qin L. Periodic

communities mining in temporal networks: Concepts and

algorithms. IEEE Trans. Knowl. Data Eng., 2022, 34(8):

3927-3945. DOI: DOI: 10.1109/TKDE.2020.3028025.

[25] Maheshwari A, Zeh N. A survey of techniques for designing

I/O-efficient algorithms. In Algorithms for Memory Hierar-

chies, Meyer U, Sanders P, Sibeyn J (eds.), Springer, 2003,

pp.36-61. DOI: 10.1007/3-540-36574-5 3.

[26] Cheng J, Ke Y, Chu S, Özsu M. Efficient core decomposi-

tion in massive networks. In Proc. the 27th IEEE Interna-

tional Conference on Data Engineering, Apr. 2011, pp.51-

62. DOI: 10.1109/ICDE.2011.5767911.

[27] Sun P, Wen Y, Duong T N B, Xiao X. GraphMP: I/O-

efficient big graph analytics on a single commodity ma-

chine. IEEE Trans. Big Data, 2020, 6(4): 816-829. DOI:

10.1109/TBDATA.2019.2908384.

[28] Wen D, Qin L, Zhang Y, Lin X, Yu J X. I/O efficient core

graph decomposition at web scale. In Proc. the 32nd IEEE

International Conference on Data Engineering, May 2016,

pp.133-144. DOI: 10.1109/ICDE.2016.7498235.

[29] Yuan L, Qin L, Lin X, Chang L, Zhang W. I/O efficient

ECC graph decomposition via graph reduction. VLDB J.,

2017, 26(2): 275-300. DOI: 10.1007/s00778-016-0451-4.

[30] Zhang Z, Yu J X, Qin L, Chang L, Lin X. I/O efficient:

Computing SCCs in massive graphs. VLDB J., 2015, 24(2):

245-270. DOI: 10.1007/s00778-014-0372-z.

[31] Jiang Y, Huang X, Cheng H. I/O efficient k-truss commu-

nity search in massive graphs. VLDB J., 2021, 30(5): 713-

738. DOI: 10.1007/s00778-020-00649-y.

[32] Li Y, Wang G, Zhao Y, Zhu F, Wu Y. Towards k-vertex

connected component discovery from large networks. World

Wide Web, 2020, 23(2): 799-830. DOI: 10.1007/s11280-019-

00725-6.

[33] Li Y, Sheng F, Sun J, Zhao Y, Wang G. A k-connected

truss subgraph discovery algorithm in large scale dual net-

works. Chinese Journal of Computers, 2020, 43(9): 1721-

1736. DOI: 10.11897/SP.J.1016.2020.01721. (in Chinese)

https://doi.org/10.1109/TBDATA.2021.3058294
https://doi.org/10.1007/s11280-021-00917-z
https://doi.org/10.1109/ICDE.2019.00104
https://doi.org/10.1145/3340531.3412091
https://doi.org/10.14778/3358701.3358704
https://doi.org/10.1007/978-3-319-63254-4_24
https://doi.org/10.1145/2160601.2160616
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1007/s10618-015-0422-1
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1109/SWC50871.2021.00044
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.1007/s00778-017-0467-4
https://doi.org/10.1145/2983323.2983836
https://doi.org/10.14778/3213880.3213881
https://doi.org/10.1016/j.ins.2017.07.012
https://doi.org/10.1109/TKDE.2020.3040762
https://doi.org/10.1109/ICDM.2008.104
https://doi.org/10.1109/TKDE.2020.3028025
https://doi.org/10.1007/3-540-36574-5_3
https://doi.org/10.1109/ICDE.2011.5767911
https://doi.org/10.1109/TBDATA.2019.2908384
https://doi.org/10.1109/ICDE.2016.7498235
https://doi.org/10.1007/s00778-016-0451-4
https://doi.org/10.1007/s00778-014-0372-z
https://doi.org/10.1007/s00778-020-00649-y
https://doi.org/10.1007/s11280-019-00725-6
https://doi.org/10.1007/s11280-019-00725-6
https://doi.org/10.11897/SP.J.1016.2020.01721

Yuan Li et al.: I/O Efficient Early Bursting Cohesive Subgraph Discovery in Temporal Networks 1355

Yuan Li received his B.S., M.S.,

and Ph.D. degrees in computer science

and technology from the Northeastern

University, Shenyang, in 2009, 2011,

and 2018, respectively. He is currently

a lecture with the School of Information

Science and Technology, North China

University of Technology, Beijing. He

is a member of CCF. His research interests include data

management, data mining, and bioinformatics.

Jie Dai received his B.S. degree

in computer science and technology

from the North China University of

Technology, Beijing, in 2022. He is

currently a M.S. student at the School

of Computer Science and Engineering,

Northeastern University, Shenyang. His

research interest is data mining.

Xiao-Lin Fan received her B.S.

degree from Southwest University of

Science and Technology, Mianyang,

in 2018, and M.S. degree from North

China University of Technology, Beijing,

in 2022, both in software engineering.

She is currently a Ph.D. student at

Beihang University, Beijing. Her cur-

rent research interests include data mining and knowledge

graph.

Yu-Hai Zhao received his B.S.,

M.S., and Ph.D. degrees in computer

science and technology from the North-

eastern University, Shenyang, in 1999,

2004, and 2007, respectively. He is

currently a professor with the School

of Computer Science and Engineering,

Northeastern University, Shenyang.

He is a senior member of CCF. His current research

interests include data management, data mining, and

bioinformatics.

Guo-Ren Wang received his B.S.,

M.S., and Ph.D. degrees in computer

science and technology from the North-

eastern University, Shenyang, in 1988,

1991 and 1996, respectively. He is

currently a professor with School of

Computer, Beijing Institute of Techno-

logy, Beijing. He is a senior member

of CCF. His research interests include XML data mana-

gement, query processing and optimization, bioinformatics,

high-dimensional indexing, parallel database systems, and

cloud data management. He has published more than 100

research papers.

	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 General Concepts
	3.2 Problem Definition

	4 In-Memory EBCS Discovery Algorithms
	4.1 In-Memory TWG TransformationAlgorithm
	4.2 Global Search Based EBCS DiscoveryAlgorithm
	4.3 Local Search Based EBCS DiscoveryAlgorithm

	5 I/O Efficient EBCS Discovery Algorithms
	5.1 I/O TWG Transformation Algorithm
	5.2 I/O Global Search Based DiscoveryAlgorithm
	5.3 I/O Local Search Based DiscoveryAlgorithm

	6 Performance Studies
	6.1 Experimental Setup
	6.2 Efficiency Testing
	6.3 Effectiveness Testing

	7 Conclusions

