Skip to main content

Advertisement

Log in

I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Holme P, Saramäki J. Temporal networks. Physics Reports, 2012, 519(3): 97-125. DOI: https://doi.org/10.1016/j.physrep.2012.03.001.

    Article  Google Scholar 

  2. Li R H, Su J, Qin L, Yu J X, Dai Q. Persistent community search in temporal networks. In Proc. the 34th IEEE International Conference on Data Engineering, Apr. 2018, pp.797-808. DOI: 10.1109/ICDE.2018.00077.

  3. Semertzidis K, Pitoura E, Terzi E, Tsaparas P. Finding lasting dense subgraphs. Data Min. Knowl. Discov., 2019, 33(5): 1417-1445. DOI: https://doi.org/10.1007/s10618-018-0602-x.

    Article  MathSciNet  MATH  Google Scholar 

  4. Qin H, Li R H, Wang G, Huang X, Yuan Y, Yu J X. Mining stable communities in temporal networks by density-based clustering. IEEE Trans. Big Data, 2022, 8(3): 671-684. DOI: https://doi.org/10.1109/TBDATA.2020.2974849.

    Article  Google Scholar 

  5. Lin L, Yuan P, Li R, Jin H. Mining diversified top-r lasting cohesive subgraphs on temporal networks. IEEE Transactions on Big Data. DOI: https://doi.org/10.1109/TBDATA.2021.3058294.

  6. Li Y, Liu J, Zhao H, Sun J, Zhao Y, Wang G. Efficient continual cohesive subgraph search in large temporal graphs. World Wide Web, 2021, 24(5): 1483-1509. DOI: https://doi.org/10.1007/s11280-021-00917-z.

    Article  Google Scholar 

  7. Qin H, Li R H, Wang G, Qin L, Cheng Y, Yuan Y. Mining periodic cliques in temporal networks. In Proc. the 35th IEEE International Conference on Data Engineering, Apr. 2019, pp.1130-1141. DOI: 10.1109/ICDE.2019.00104.

  8. Zhang Q, Guo D, Zhao X, Li X, Wang X. Seasonal-periodic subgraph mining in temporal networks. In Proc. the 29th ACM International Conference on Information and Knowledge Management, Oct. 2020, pp.2309-2312. DOI: 10.1145/3340531.3412091.

  9. Qin H, Li R H, Wang G, Qin L, Yuan Y, Zhang Z. Mining bursting communities in temporal graphs. arXiv:191-1.02780, 2019. https://arxiv.org/abs/1911.02780, Jul. 2022.

  10. Chu L, Zhang Y, Yang Y, Wang L, Pei J. Online density bursting subgraph detection from temporal graphs. Proc. VLDB Endow., 2019, 12(13): 2353-2365. DOI: https://doi.org/10.14778/3358701.3358704.

    Article  Google Scholar 

  11. Palen L, Hughes A L. Social media in disaster communication. In Handbook of Disaster Research, Rodríguez H, Donner W, Trainor J E (eds.), Springer Cham, 2018, pp.497-518. DOI: 10.1007/978-3-319-63254-4 24.

  12. Jain V, Sharma A, Subramanian L. Road traffic congestion in the developing world. In Proc. the 2nd ACM Symposium on Computing for Development, Mar. 2012, Article No. 11. DOI: https://doi.org/10.1145/2160601.2160616.

  13. Cooper I, Mondal A, Antonopoulos G C. A SIR model assumption for the spread of COVID-19 in different communities. Chaos, Solitons & Fractals, 2020, 139: Article No. 110057. DOI: https://doi.org/10.1016/j.chaos.2020.110057.

  14. Barbieri N, Bonchi F, Galimberti E, Gullo F. Efficient and effective community search. Data Min. Knowl. Discov., 2015, 29(5): 1406-1433. DOI: https://doi.org/10.1007/s10618-015-0422-1.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui W, Xiao Y, Wang H, Wang W. Local search of communities in large graphs. In Proc. the 2014 ACM SIGMOD International Conference on Management of Data, Jun. 2014, pp.991-1002. DOI: 10.1145/2588555.2612179.

  16. Dai J, Li Y, Fan X, Sun J, Zhao Y. Finding early bursting cohesive subgraphs in large temporal networks. In Proc. the 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation, Oct. 2021, pp.264-271. DOI: https://doi.org/10.1109/SWC50871.2021.00044.

  17. Li R H, Qin L, Yu J X, Mao R. Influential community search in large networks. Proc. VLDB Endow., 2015, 8(5): 509-520. DOI: https://doi.org/10.14778/2735479.2735484.

    Article  Google Scholar 

  18. Li R, Qin L, Yu J X, Mao R. Finding influential communities in massive networks. VLDB J., 2017, 26(6): 751-776. DOI: https://doi.org/10.1007/s00778-017-0467-4.

    Article  Google Scholar 

  19. Chen S, Wei R, Popova D, Thomo A. Efficient computation of importance based communities in web-scale networks using a single machine. In Proc. the 25th ACM International Conference on Information and Knowledge Management, Oct. 2016, pp.1553-1562. DOI: 10.1145/2983323.2983836.

  20. Bi F, Chang L, Lin X, Zhang W. An optimal and progressive approach to online search of top-k influential communities. Proc. VLDB Endow., 2018, 11(9): 1056-1068. DOI: https://doi.org/10.14778/3213880.3213881.

    Article  Google Scholar 

  21. Zheng Z, Ye F, Li R H, Ling G, Jin T. Finding weighted k-truss communities in large networks. Inf. Sci., 2017, 417: 344-360. DOI: https://doi.org/10.1016/j.ins.2017.07.012.

    Article  MATH  Google Scholar 

  22. Sun L, Huang X, Li R, Choi B, Xu J. Index-based intimatecore community search in large weighted graphs. IEEE Trans. Knowl. Data Eng., 2022, 34(9): 4313-4327. DOI: https://doi.org/10.1109/TKDE.2020.3040762.

    Article  Google Scholar 

  23. Lahiri M, Berger-Wolf T F. Mining periodic behavior in dynamic social networks. In Proc. the 8th IEEE International Conference on Data Mining, Dec. 2008, pp.373-382. DOI: 10.1109/ICDM.2008.104.

  24. Qin H, Li R, Yuan Y, Wang G, Yang W, Qin L. Periodic communities mining in temporal networks: Concepts and algorithms. IEEE Trans. Knowl. Data Eng., 2022, 34(8): 3927-3945. DOI: DOI: https://doi.org/10.1109/TKDE.2020.3028025.

    Article  Google Scholar 

  25. Maheshwari A, Zeh N. A survey of techniques for designing I/O-efficient algorithms. In Algorithms for Memory Hierarchies, Meyer U, Sanders P, Sibeyn J (eds.), Springer, 2003, pp.36-61. DOI: https://doi.org/10.1007/3-540-36574-5_3.

  26. Cheng J, Ke Y, Chu S, Özsu M. Efficient core decomposition in massive networks. In Proc. the 27th IEEE International Conference on Data Engineering, Apr. 2011, pp.51-62. DOI: 10.1109/ICDE.2011.5767911.

  27. Sun P, Wen Y, Duong T N B, Xiao X. GraphMP: I/Oe efficient big graph analytics on a single commodity machine. IEEE Trans. Big Data, 2020, 6(4): 816-829. DOI: https://doi.org/10.1109/TBDATA.2019.2908384.

    Article  Google Scholar 

  28. Wen D, Qin L, Zhang Y, Lin X, Yu J X. I/O efficient core graph decomposition at web scale. In Proc. the 32nd IEEE International Conference on Data Engineering, May 2016, pp.133-144. DOI: 10.1109/ICDE.2016.7498235.

  29. Yuan L, Qin L, Lin X, Chang L, Zhang W. I/O efficient ECC graph decomposition via graph reduction. VLDB J., 2017, 26(2): 275-300. DOI: https://doi.org/10.1007/s00778-016-0451-4.

    Article  Google Scholar 

  30. Zhang Z, Yu J X, Qin L, Chang L, Lin X. I/O efficient: Computing SCCs in massive graphs. VLDB J., 2015, 24(2): 245-270. DOI: https://doi.org/10.1007/s00778-014-0372-z.

    Article  Google Scholar 

  31. Jiang Y, Huang X, Cheng H. I/O efficient k-truss community search in massive graphs. VLDB J., 2021, 30(5): 713-738. DOI: https://doi.org/10.1007/s00778-020-00649-y.

    Article  Google Scholar 

  32. Li Y, Wang G, Zhao Y, Zhu F, Wu Y. Towards k-vertex connected component discovery from large networks. World Wide Web, 2020, 23(2): 799-830. DOI: https://doi.org/10.1007/s11280-019-00725-6.

    Article  Google Scholar 

  33. Li Y, Sheng F, Sun J, Zhao Y, Wang G. A k-connected truss subgraph discovery algorithm in large scale dual networks. Chinese Journal of Computers, 2020, 43(9): 1721-1736. DOI: https://doi.org/10.11897/SP.J.1016.2020.01721. (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hai Zhao.

Supplementary Information

ESM 1

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dai, J., Fan, XL. et al. I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks. J. Comput. Sci. Technol. 37, 1337–1355 (2022). https://doi.org/10.1007/s11390-022-2367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-022-2367-3

Keywords