Skip to main content
Log in

Isolate Sets Based Parallel Louvain Method for Community Detection

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Community detection is a vital task in many fields, such as social networks and financial analysis, to name a few. The Louvain method, the main workhorse of community detection, is a popular heuristic method. To apply it to large-scale graph networks, researchers have proposed several parallel Louvain methods (PLMs), which suffer from two challenges: the latency in the information synchronization, and the community swap. To tackle these two challenges, we propose an isolate sets based parallel Louvain method (IPLM) and a fusion IPLM with the hashtables based Louvain method (FIPLM), which are based on a novel graph partition algorithm. Our graph partition algorithm divides the graph network into subgraphs called isolate sets, in which the vertices are relatively decoupled from others. We first describe the concepts and properties of the isolate set. Second we propose an algorithm to divide the graph network into isolate sets, which enjoys the same computation complexity as the breadth-first search. Third, we propose IPLM, which can efficiently calculate and update vertices information in parallel without latency or community swap. Finally, we achieve further acceleration by FIPLM, which maintains a high quality of community detection with a faster speedup than IPLM. Our two methods are for shared-memory architecture, and we implement our methods on an 8-core PC; the experiments show that IPLM achieves a maximum speedup of 4.62x and outputs higher modularity (maximum 4.76%) than the serial Louvain method on 14 of 18 datasets. Moreover, FIPLM achieves a maximum speedup of 7.26x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fortunato S. Community detection in graphs. Physics Reports, 2010, 486(3/4/5): 75–174. DOI: https://doi.org/10.1016/j.physrep.2009.11.002.

    Article  MathSciNet  Google Scholar 

  2. Clauset A, Newman M E J, Moore C. Finding community structure in very large networks. Physical Review E, 2004, 70(6): 066111. DOI: https://doi.org/10.1103/PhysRevE.70.066111.

    Article  Google Scholar 

  3. Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics, 2008, 2008: P10008. DOI: https://doi.org/10.1088/1742-5468/2008/10/P10008.

    Article  MATH  Google Scholar 

  4. Lu H, Halappanavar M, Kalyanaraman A. Parallel heuristics for scalable community detection. Parallel Computing, 2015, 47: 19–37. DOI: https://doi.org/10.1016/j.parco.2015.03.003.

    Article  MathSciNet  Google Scholar 

  5. Que X Y, Checconi F, Petrini F, Gunnels J A. Scalable community detection with the Louvain algorithm. In Proc. the 29th IEEE International Parallel and Distributed Processing Symposium, May 2015, pp.28–37. DOI: 10.1109/IPDPS.2015.59.

  6. Staudt C L, Meyerhenke H. Engineering parallel algorithms for community detection in massive networks. IEEE Trans. Parallel and Distributed Systems, 2016, 27(1): 171–184. DOI: https://doi.org/10.1109/TPDS.2015.2390633.

    Article  Google Scholar 

  7. Forster R. Louvain community detection with parallel heuristics on GPUs. In Proc. the 20th IEEE Jubilee International Conference on Intelligent Engineering Systems, Jun. 30–Jul. 2, 2016, pp.227–232. DOI: 10.1109/INES.2016.7555126.

  8. Naim M, Manne F, Halappanavar M, Tumeo A. Community detection on the GPU. In Proc. the 2017 IEEE International Parallel and Distributed Processing Symposium, May 29–Jun. 2, 2017, pp.625–634. DOI: 10.1109/IPDPS.2017.16.

  9. Zeng J P, Yu H F. A scalable distributed Louvain algorithm for large-scale graph community detection. In Proc. the 2018 IEEE International Conference on Cluster Computing, Sept. 2018, pp.268–278. DOI: 10.1109/CLUSTER.2018.00044.

  10. Ghosh S, Halappanavar M, Tumeo A, Kalyanaraman A, Lu H, Chavarrià-Miranda D, Khan A, Gebremedhin A. Distributed Louvain algorithm for graph community detection. In Proc. the 2018 IEEE International Parallel and Distributed Processing Symposium, May 2018, pp.885–895. DOI: 10.1109/IPDPS.2018.00098.

  11. Zeng J P, Yu H F. Parallel modularity-based community detection on large-scale graphs. In Proc. the 2015 IEEE International Conference on Cluster Computing, Sept. 2015. DOI: https://doi.org/10.1109/CLUSTER.2015.11.

  12. Duckworth W, Zito M. Large 2-independent sets of regular graphs. Electronic Notes in Theoretical Computer Science, 2003, 78: 223–235. DOI: https://doi.org/10.1016/S1571-0661(04)81015-6.

    Article  MATH  Google Scholar 

  13. Blidia M, Chellali M, Favaron O, Meddah N. Maximal kindependent sets in graphs. Discussiones Mathematicae Graph Theory, 2008, 28(1): 151–163. DOI: https://doi.org/10.7151/dmgt.1398.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang D W, Cui W Q, Qin B. CK-modes clustering algorithm based on node cohesion in labeled property graph. Journal of Computer Science and Technology, 2019, 34(5): 1152–1166. DOI: https://doi.org/10.1007/s11390-019-1966-0.

    Article  Google Scholar 

  15. Yang W, Shen G W, Wang W, Gong L Y, Yu M, Dong G Z. Anomaly detection in microblogging via co-clustering. Journal of Computer Science and Technology, 2015, 30(5): 1097–1108. DOI: https://doi.org/10.1007/s11390-015-1585-3.

    Article  Google Scholar 

  16. Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118–1123. DOI: https://doi.org/10.1073/pnas.0706851105.

    Article  Google Scholar 

  17. Rosvall M, Axelsson D, Bergstrom C T. The map equation. The European Physical Journal Special Topics, 2009, 178(1): 13–23. DOI: https://doi.org/10.1140/epjst/e2010-01179-1.

    Article  Google Scholar 

  18. Kernighan B W, Lin S. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 1970, 49(2): 291–307. DOI: https://doi.org/10.1002/j.1538-7305.1970.tb01770.x.

    Article  MATH  Google Scholar 

  19. MacQueen J. Some methods for classification and analysis of multivariate observations. In Proc. the 5th Berkeley Symposium on Mathematical Statistics and Probability, Le Cam L M, Neyman J (eds.), Statistical Laboratory of the University of California, 1967, pp.407.

  20. Barnes E R. An algorithm for partitioning the nodes of avgraph. SIAM Journal on Algebraic Discrete Methods,1982, 3(4): 541–550. DOI: https://doi.org/10.1137/0603056.

    Article  MathSciNet  MATH  Google Scholar 

  21. Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821–7826. DOI: https://doi.org/10.1073/pnas.122653799.

    Article  MathSciNet  MATH  Google Scholar 

  22. Flake G W, Lawrence S, Lee Giles C. Efficient identification of Web communities. In Proc. the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2000, pp.150–160. DOI: 10.1145/347090.347121.

  23. Flake G W, Lawrence S, Giles C L, Coetzee F M. Self-organization and identification of Web communities. Computer, 2002, 35(3): 66–70. DOI: https://doi.org/10.1109/2.989932.

    Article  Google Scholar 

  24. Airoldi E M, Blei D M, Fienberg S E, Xing E P. Mixed membership stochastic blockmodels. The Journal of Machine Learning Research, 2008, 9: 1981–2014. DOI: https://doi.org/10.5555/1390681.1442798.

    Article  MATH  Google Scholar 

  25. Mehta N, Carin L, Rai P. Stochastic blockmodels meet graph neural networks. arXiv: 1905.05738, 2019. https://arxiv.org/abs/1905.05738, May 2019.

  26. Gopalan P K, Blei D M. Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14534–14539. DOI: https://doi.org/10.1073/pnas.1221839110.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheong C Y, Huynh H P, Lo D, Goh R S M. Hierarchical parallel algorithm for modularity-based community detection using GPUs. In Proc. the 19th European Conference on Parallel Processing, Aug. 2013, pp.775–787. DOI: 10.1007/978-3-642-40047-6_77.

  28. Fazlali M, Moradi E, Malazi H T. Adaptive parallel Louvain community detection on a multicore platform. Microprocessors and Microsystems, 2017, 54: 26–34. DOI: https://doi.org/10.1016/j.micpro.2017.08.002.

    Article  Google Scholar 

  29. Wickramaarachchi C, Frincu M, Small P, Prasanna V K. Fast parallel algorithm for unfolding of communities in large graphs. In Proc. the 2014 IEEE High Performance Extreme Computing Conference, Sept. 2014. DOI: https://doi.org/10.1109/HPEC.2014.7040973.

  30. Kunegis J. KONECT: The Koblenz network collection. In Proc. the 22nd International Conference on World Wide Web, May 2013, pp.1343–1350. DOI: 10.1145/2487788.2488173.

  31. Boldi P, Rosa M, Santini M, Vigna S. Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In Proc. the 20th International Conference on World Wide Web, Mar. 2011, pp.587–596. DOI: 10.1145/1963405.1963488.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Dou.

Supplementary Information

ESM 1

(PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qie, H., Dou, Y., Huang, Z. et al. Isolate Sets Based Parallel Louvain Method for Community Detection. J. Comput. Sci. Technol. 38, 373–390 (2023). https://doi.org/10.1007/s11390-023-1599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-023-1599-1

Keywords

Navigation