Abstract
The theory of Instrumental Genesis (IG) accounts for the mutual evolution of artefacts and their uses, for specific purposes in specific environments. IG has been used in Computer-Supported Collaborative Learning (CSCL) to explain how instruments are generated through the interactions of learners, teachers and artefacts in ‘downstream’ classroom activities. This paper addresses the neglected ‘upstream’ activities of CSCL design, where teachers, educational designers and educational technologists use CSCL design artefacts in specific design-for-learning situations. The paper shows how the IG approach can be used to follow artefacts and ideas back and forth on the CSCL design and implementation pathway. It demonstrates ways of tracing dynamic relations between artefacts and their uses across the whole complex of instrument-mediated activity implicated in learning and design. This has implications for understanding the communicability of design ideas and informing the iterative improvement of designs and designing for CSCL.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
To be clear, we see ‘learning’ in broad terms. It is not just done by students, nor is it solely the result of instruction. It includes the development of richer understandings and sharper skills, brought about by a variety of experiences
The importance of artefacts in CSCL becomes even greater if one acknowledges that the category is not restricted to material and digital tools but also includes such things as task designs, collaboration scripts and other kinds of scaffolds - conceptual and/or procedural artefacts that sometimes take on a material and/or digital form.
We apologise for the visual similarity of these two contrasting terms, but they are now firmly fixed in the IG literature.
For clarity, we refer to design studios in general by using lower case. The specific Design Studio in which we carried out the research reported in this paper is denoted with upper case. We provide a brief description of the Design Studio in the section ‘Understanding the Design Studio in action’.
References
Adams, R. S., Turns, J., & Atman, C. J. (2003). Educating effective engineering designers: The role of reflective practice. Design Studies, 24(3), 275–294.
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. (1977). A pattern language: Towns, buildings, construction. Oxford University Press.
Béguin, P. (2003). Design as a mutual learning process between users and designers. Interacting with Computers, 15(5), 709–730.
Béguin, P., & Rabardel, P. (2000). Designing for instrument-mediated activity. Scandinavian Journal of Information Systems, 12(1), 1.
Carvalho, L., Dong, A., & Maton, K. (2009). Legitimating design: A sociology of knowledge account of the field. Design Studies, 30(5), 483–502.
Cennamo, K., & Brandt, C. (2012). The “right kind of telling”: Knowledge building in the academic design studio. Educational Technology Research and Development, 60(5), 839–858.
Conole, G., McAndrew, P., & Dimitriadis, Y. (2010). The role of CSCL pedagogical patterns as mediating artefacts for repurposing open educational resources. In F. Pozzi & D. Persico (Eds.), Techniques for fostering collaboration in online learning communities: Theoretical and practical perspectives (pp. 206–223). Hershey: IGI Global.
Corcoran, D. (2011). The need to make ‘boundary objects’ meaningful: a learning outcome from lesson study research. In Proceedings of the Congress of the European Society for Research in Mathematics Education (CERME7), (pp. 1–10). Rzeszów, Poland.
Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed method approaches (2nd ed.). Thousand Oaks: Sage.
Damşa, C. I., Kirschner, P. A., Andriessen, J. E., Erkens, G., & Sins, P. H. (2010). Shared epistemic agency: An empirical study of an emergent construct. Journal of the Learning Sciences, 19(2), 143–186.
Denzin, N., & Lincoln, Y. (Eds.). (2000). The handbook of qualitative research (2nd ed.). Thousand Oaks: Sage.
Dillenbourg, P., & Hong, F. (2008). The mechanics of CSCL macro scripts. International Journal of Computer-Supported Collaborative Learning, 3(1), 5–23.
Dorst, K., & Dijkhuis, J. (1995). Comparing paradigms for describing design activity. Design Studies, 16(2), 261–274.
Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Kosultit Oy.
Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen, & R.-L. Punamäki (Eds.), Perspectives on activity theory (pp. 19–38). Cambridge: Cambridge University Press.
Fenwick, T., & Edwards, R. (2010). Actor network theory in education. London: Routledge.
Fischer, F., Kollar, I., Mandl, H., & Haake, J. M. (2007). Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives (Vol. 6). New York: Springer.
Folcher, V. (2003). Appropriating artifacts as instruments: When design-for-use meets design-in-use. Interacting with Computers, 15(5), 647–663.
Gatt, C., & Ingold, T. (2013). From description to correspondence: Anthropology in real time. In W. Gunn, T. Otto, & R. Charlotte-Smith (Eds.), Design anthropology: Theory and practice (pp. 139–158). London: Bloomsbury.
Glanville, R. (2015). The sometimes uncomfortable marriages of design and research. In P. A. Rogers & J. Yee (Eds.), The Routledge companion to design research (pp. 9–22). London: Routledge.
Goldschmidt, G., Casakin, H., Avidan, Y., & Ronen, O. (2014). Three studio critiquing cultures: Fun follows function or function follows fun? In Proceedings of the Design Thinking Research Symposium, (pp. 1–27). Purdue University, USA.
Goodyear, P. (2015). Teaching as design. HERDSA Review of Higher Education, 2, 27–50.
Goodyear, P., & Dimitriadis, Y. (2013). In medias res: Reframing design for learning. Research in Learning Technology, 21(19909), 1–13.
Goodyear, P., & Retalis, S. (Eds.). (2010). Technology-enhanced learning: Design patterns and pattern languages. Rotterdam: Sense Publishers.
Guin, D., & Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: Necessity of intrumental orchestrations. Zentralblatt für Didaktik der Mathematik, 34(5), 204–211.
Hernández Leo, D., Asensio-Pérez, J. I., Dimitriadis, Y., & Villasclaras-Fernández, E. D. (2010). Generating CSCL scripts: From a conceptual model of pattern languages to the design of real scripts. In P. Goodyear & S. Retalis (Eds.), Technology-enhaced learning: Design patterns and pattern languages (pp. 49–64). Rotterdam: Sense Publishers.
Hernández-Leo, D., Villasclaras-Fernández, E. D., Asensio-Pérez, J. I., Dimitriadis, Y., Jorrín-Abellán, I. M., Ruiz-Requies, I., & Rubia-Avi, B. (2006a). COLLAGE: A collaborative learning design editor based on patterns. Journal of Educationl Technology and Society, 9(1), 58–71.
Hernández-Leo, D., Villasclaras-Fernandez, E. D., Asensio-Perez, J. I., Dimitriadis, Y. A., & Retalis, S. (2006b). CSCL scripting patterns: Hierarchical relationships and applicability. In Proceedings of the Sixth International Conference on Advanced Learning Technologies, 2006, (pp. 388–392). IEEE.
Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction (TOCHI), 7(2), 174–196 https://dl.acm.org/citation.cfm?id=353487. Accessed 01 Feb 2019.
Hutchins, E. (1995). Cognition in the wild. Cambridge Mass: MIT Press.
Illeris, K. (2009). A comprehensive understanding of human learning. In K. Illeris (Ed.), Contemporary theories of learning (pp. 7–20). London: Routledge.
Jonas, W. (2014). A cybernetic model of design research. Kybernetes, 36(9), 1362–1380.
Kali, Y., Goodyear, P., & Markauskaite, L. (2011). Researching design practices and design cognition: Contexts, experiences and pedagogical knowledge-in-pieces. Learning, Media and Technology, 36(2), 129–149.
Kaptelinin, V. (2005). The object of activity: Making sense of the sense-maker. Mind, Culture, and Activity, 12(1), 4–18.
Kaptelinin, V., & Nardi, B. (2006). Acting with technology: Activity theory and interaction design. Cambridge: MIT Press.
Krippendorff, K. (2005). The semantic turn: A new foundation for design. CRC Press.
Latour, B. (1996). On actor-network theory: A few clarifications. Soziale Welt., 47(4), 369–381.
Laurillard, D. (2012). Teaching as a design science: Building pedagogical patterns for learning and technology. New York: Routledge.
Leeuwen, A. V. (2015). Teacher regulation of CSCL: Exploring the complexity of teacher regulation and the supporting role of learning analytics. PhD thesis. Interuniversity Center for Educational Research. Retrieved from http://dspace.library.uu.nl/handle/1874/313223. Accessed 01 Feb 2019.
Lonchamp, J. (2012). An instrumental perspective on CSCL systems. International Journal of Computer-Supported Collaborative Learning, 7(2), 211–237.
Looi, C.-K., & Song, Y. (2013). Orchestration in a networked classroom: Where the teacher's real-time enactment matters. Computers & Education, 69, 510–513.
Manzini, E. (2015). Design, when everybody designs: An introduction to design for social innovation. Cambridge: MIT press.
Martinez-Maldonado, R., Goodyear, P., Kay, J., Thompson, K., & Carvalho, L. (2016). An actionable approach to understand group experience in complex, multi-surface spaces. SIGCHI Conference: Human Factors in Computing Systems, CHI, 2016, 2062–2074.
Martinez-Maldonado, R., Carvalho, L., & Goodyear, P. (2018). Collaborative Design-in-use: An Instrumental Genesis Lens in Multi-device Environments. Proceedings of the ACM on Human-Computer Interaction – CSCW, 2, 1–24. https://doi.org/10.1145/3274387.
Masterman, E. (2015). Towards a principled approach to evaluating learning design tools. In M. Maina, B. Craft, & Y. Mor (Eds.), The art & Science of learning design (pp. 105–120). Rotterdam: Springer.
Mor, Y., & Mogilevsky, O. (2013). The learning design studio: Collaborative design inquiry as teachers’ professional development. Research in Learning Technology, 21(22054), 1–15.
Murray, T. (2016). Coordinating the complexity of tools, tasks, and users: On theory-based approaches to authoring tool usability. International Journal of Artificial Intelligence in Education, 26(1), 37–71.
Nardi, B. (1996). Studying context: A comparison of activity theory, situated action models, and distributed cognition. In B. Nardi (Ed.), Context and Consciousness: Activity Theory and Human-computer Interaction (pp. 35–52). Cambridge: MIT Presse.
Oliver, M. (2011). Technological determinism in educational technology research: Some alternative ways of thinking about the relationship between learning and technology. Journal of Computer Assisted Learning, 27(5), 373–384.
Oliver, M. (2013). Learning technology: Theorising the tools we study. British Journal of Educational Technology, 44(1), 31–43.
Orlikowski, W. J. (2007). Sociomaterial practices: Exploring technology at work. Organization Studies, 28(9), 1435–1448.
Overdijk, M., van Diggelen, W., Kirschner, P. A., & Baker, M. (2012). Connecting agents and artifacts in CSCL: Towards a rationale of mutual shaping. International Journal of Computer-Supported Collaborative Learning, 7(2), 193–210.
Overdijk, M., van Diggelen, W., Andriessen, J., & Kirschner, P. A. (2014). How to bring a technical artifact into use: A micro-developmental perspective. International Journal of Computer-Supported Collaborative Learning, 9(3), 283–303.
Papanek, V. (2001). The future isn't what it used to be. In V. Margolin & R. Buchanan (Eds.), The idea of design. A design issues reader (pp. 56–69). London: MIT Press.
Prieto, L., Dimitriadis, Y., & Villagra, S. (2011). Representing learning design and classroom orchestration using atomic patterns. In Proceedings of the The Art and Science of Learning Design workshop (ASLD 2011).
Rabardel, P., (2003). From artefact to instrument. Interacting with Computers, 15(5), 641–645.
Rabardel, P., & Béguin, P. (2005). Instrument mediated activity: From subject development to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429–461.
Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15(5), 665–691.
Ritella, G., & Hakkarainen, K. (2012). Instrumental genesis in technology-mediated learning: From double stimulation to expansive knowledge practices. International Journal of Computer-Supported Collaborative Learning, 7(2), 239–258.
Salama, A. (1995). New trends in architectural education: Designing the design studio. Raleigh: Tailored Text and Unlimited Potentials.
Salomon, G. (Ed.). (1993). Distributed cognitions: Psychological and educational considerations. Cambridge: Cambridge University Press.
Schön, D. A. (1987). Educating the reflective practitioner: Toward a new design for teaching and learning in the professions: Proquest/Csa journal division.
Simon, H. (1995). Problem forming, problem finding, and problem solving in design. In A. Collen & W. Gasparski (Eds.), Design and systems: general applications of methodology (Vol. 3, pp. 245–257). New Brunswick: Transaction Publishers.
Simon, H. (1996). Sciences of the artificial (3rd ed.). Cambridge: MIT.
Song, Y., & Looi, C.-K. (2012). Linking teacher beliefs, practices and student inquiry-based learning in a CSCL environment: A tale of two teachers. International Journal of Computer-Supported Collaborative Learning, 7(1), 129–159.
Strijbos, J.-W., Kirschner, P., & Martens, R. (Eds.). (2004). What we know about CSCL: and implementing it in higher education. Boston: Kluwer.
Sweeting, B. (2016). Design research as a variety of second-order cybernetic practice. Constructivist Foundations, 11(3), 572–579.
Tchounikine, P. (2008). Operationalizing macro-scripts in CSCL technological settings. International Journal of Computer-Supported Collaborative Learning, 3(2), 193–233.
Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of though in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.
Vidal-Gomel, C., & Samurçay, R. (2002). Qualitative analyses of accidents and incidents to identify competencies. The electrical systems maintenance case. Safety Science, 40(6), 479–500.
Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer–supported collaborative learning. Instructional Science, 33(1), 1–30.
White, T. (2008). Debugging an artifact, instrumenting a bug: Dialectics of instrumentation and design in technology-rich learning environments. International Journal of Computers for Mathematical Learning, 13(1), 1–26.
Acknowledgements
The authors acknowledge the financial support of the Australian Research Council (Grant FL100100203). The studies were conducted under protocol 2012/2794 approved by The University of Sydney Human Research Ethics Committee.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Carvalho, L., Martinez-Maldonado, R. & Goodyear, P. Instrumental genesis in the design studio. Intern. J. Comput.-Support. Collab. Learn 14, 77–107 (2019). https://doi.org/10.1007/s11412-019-09294-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11412-019-09294-2