Skip to main content
Log in

Understanding the effect of differences in prior knowledge on middle school students’ collaborative interactions and learning

  • Published:
International Journal of Computer-Supported Collaborative Learning Aims and scope Submit manuscript

Abstract

We investigated how the level of variance in students’ prior knowledge may have influenced their collaborative interactions and science learning in small groups. We examined learning outcomes from 102 groups from seven science teachers’ classes and discourse from two contrasting groups: Homogeneous versus heterogeneous. We examined individual and group outcomes using hierarchical linear modeling (HLM) to explore the effect of membership in a homogeneous or heterogeneous group on students’ learning. We then used social network analyses (SNA) to identify any differences in interaction patterns between the two contrasting groups as they conducted multiple compost simulations. Finally, we examined students’ discussions in these groups to better understand their interactions. In our HLM analysis, we found that students in homogeneous groups made significantly greater learning gains than students in heterogeneous groups. The SNA and thematic analysis of the discussions in our contrasting groups helped us identify that the interactions in the homogeneous group were more distributed, while the interactions in the heterogeneous group were more centralized around the member with the greatest prior knowledge, and that these patterns were stable over time. We also found that the students in the homogenous group engaged in richer discussions that were more supportive and built upon one another’s ideas, which may have influenced their group and individual learning outcomes. While our findings indicate that students in homogeneous groups learn more and collaborate better, we discuss how some heterogeneity may be helpful, and group formation should focus on avoiding extreme cases of heterogeneity and provide students with scaffolding for collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abtahi, Y., Graven, M., & Lerman, S. (2017). Conceptualising the more knowledgeable other within a multi-directional ZPD. Educational Studies in Mathematics, 96(3), 275–287. https://doi.org/10.1007/s10649-017-9768-1

    Article  Google Scholar 

  • Aggarwal, I., & Woolley, A. W. (2013). Do you see what I see? The effect of members’ cognitive styles on team processes and errors in task execution. Organizational Behavior and Human Decision Processes, 122(1), 92–99. https://doi.org/10.1016/j.obhdp.2013.04.003

    Article  Google Scholar 

  • Andrews, J. J., & Rapp, D. N. (2015). Benefits, costs, and challenges of collaboration for learning and memory. Translational Issues in Psychological Science, 1(2), 182. https://doi.org/10.1037/tps0000025

    Article  Google Scholar 

  • Apedoe, X. S., Ellefson, M. R., & Schunn, C. D. (2012). Learning together while designing: Does group size make a difference? Journal of Science Education and Technology, 21(1), 83–94. https://doi.org/10.1007/s10956-011-9284-5

    Article  Google Scholar 

  • Arvaja, M., Häkkinen, P., Eteläpelto, A., & Rasku-Puttonen, H. (2000). Collaborative processes during report writing of a science learning project: The nature of discourse as a function of task requirements. European Journal of Psychology of Education, 15(4), 455–466. https://doi.org/10.1007/BF03172987

    Article  Google Scholar 

  • Asterhan, C. S., & Schwarz, B. B. (2009). Argumentation and explanation in conceptual change: Indications from protocol analyses of peer-to-peer dialog. Cognitive Science, 33(3), 374–400.

    Article  Google Scholar 

  • Baeten, M., & Simons, M. (2014). Student teachers' team teaching: Models, effects, and conditions for implementation. Teaching and Teacher Education, 41, 92–110. https://doi.org/10.1016/j.tate.2014.03.010

    Article  Google Scholar 

  • Baleghizadeh, S., Memar, H. T., & Memar, A. T. (2010). The effect of symmetrical versus asymmetrical scaffolding on English reading comprehension of EFL learners. Studies in Literature and Language, 1(7), 104–111.

    Google Scholar 

  • Barron, B. (2003). When smart groups fail. The Journal of the Learning Sciences, 12(3), 307–359. https://doi.org/10.1207/S15327809JLS1203_1

    Article  Google Scholar 

  • Bates, D. M. (2022). Computational methods for mixed models [Tech. Rep.],. Dept. of Statistics, University of Wisconsin https://cran.r-project.org/web/packages/lme4/vignettes/Theory.pdf

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

    Article  Google Scholar 

  • Bodemer, D., & Dehler, J. (2011). Group awareness in CSCL environments. Computers in Human Behavior, 27(3), 1043–1045. https://doi.org/10.1016/j.chb.2010.07.014

    Article  Google Scholar 

  • Bopardikar, A., Gnesdilow, D., & Puntambekar, S. (2009). Interplay of group dynamics and science talk in a design based classroom. In A. Dimitracopoulou, C. O’Malley, D. Suthers, & Reimann (Eds.), Proceedings of the 9th international conference on computer supported collaborative learning-volume 2 (pp. 68-70). Rhodes, Greece International Society of the Learning Sciences.

    Google Scholar 

  • Brown, A. L., Ash, D., Rutherford, M., Nakagawa, K., Gordon, A., & Campione, J. C. (1993). Distributed expertise in the classroom. In G. Salomon (Ed.), Distributed cognitions: Psychological and educational considerations (pp. 188–228). Cambridge University Press.

    Google Scholar 

  • Carolan, B. V. (2013). Social network analysis and education: Theory, methods & applications. Sage Publications.

  • Chan, C. K. (2001). Peer collaboration and discourse patterns in learning from incompatible information. Instructional Science, 29(6), 443–479.

    Article  Google Scholar 

  • Chen, J., Wang, M., Kirschner, P. A., & Tsai, C. C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research, 88(6), 799–843.

    Article  Google Scholar 

  • Chernikova, O., Heitzmann, N., Stadler, M., Holzberger, D., Seidel, T., & Fischer, F. (2020a). Simulation-based learning in higher education: A meta-analysis. Review of Educational Research, 90(4), 499–541.

    Article  Google Scholar 

  • Chernikova, O., Heitzmann, N., Stadler, M., Seidel, T., & Fischer, F. (2020b). Effects of the prior knowledge and scaffolding in facilitating complex skills through simulations: A meta-analysis. In Gresalfi, M. and Horn, I. S. (Eds.), The interdisciplinarity of the learning sciences, 14th international conference of the learning sciences (ICLS) 2020, Volume 4 (pp. 2355-2356). : International Society of the Learning Sciences.

  • Chi, M. T., & Menekse, M. (2015). Dialogue patterns in peer collaboration that promote learning. In L. B. Resnick, C. Asterhan, & S. N. Clarke (Eds.), Socializing intelligence through academic talk and dialogue (pp. 263–274). American Educational Research Association.

    Chapter  Google Scholar 

  • Claros, I., Cobos, R., & Collazos, C. A. (2015). An approach based on social network analysis applied to a collaborative learning experience. IEEE Transactions on Learning Technologies, 9(2), 190–195.

    Article  Google Scholar 

  • Csanadi, A., Kollar, I., & Fischer, F. (2021). Pre-service teachers’ evidence-based reasoning during pedagogical problem-solving: Better together? European Journal of Psychology of Education, 36(1), 147–168. https://doi.org/10.1007/s10212-020-00467-4

    Article  Google Scholar 

  • Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. International Journal of Complex Systems, 1695, 2006 http://igraph.org

    Google Scholar 

  • Cukurova, M., Luckin, R., Millán, E., Mavrikis, M., & Spikol, D. (2017). Diagnosing collaboration in practice-based learning: Equality and intra-individual variability of physical interactivity. In É. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pérez-Sanagustín (Eds.), Data driven approaches in digital education. EC-TEL 2017 (Vol. 10474, pp. 30–42). Springer. https://doi.org/10.1007/978-3-319-66610-5_3

    Chapter  Google Scholar 

  • Curşeu, P. L., & Pluut, H. (2013). Student groups as learning entities: The effect of group diversity and teamwork quality on groups' cognitive complexity. Studies in Higher Education, 38(1), 87–103. https://doi.org/10.1080/03075079.2011.565122

    Article  Google Scholar 

  • Curşeu, P. L., Schalk, R., & Schruijer, S. (2010). The use of cognitive mapping in eliciting and evaluating group cognitions. Journal of Applied Social Psychology, 40(5), 1258–1291. https://doi.org/10.1111/j.1559-1816.2010.00618.x

    Article  Google Scholar 

  • Dado, M., & Bodemer, D. (2017). A review of methodological applications of social network analysis in computer-supported collaborative learning. Educational Research Review, 22, 159–180. https://doi.org/10.1016/j.edurev.2017.08.005

    Article  Google Scholar 

  • Dawes, L., Mercer, N., & Wegerif, R. (2000). Thinking together. The Questions Publishing Company.

    Google Scholar 

  • de Jong, T. (2019). Moving towards engaged learning in STEM domains; there is no simple answer, but clearly a road ahead. Journal of Computer Assisted Learning, 35(2), 153–167.

    Article  Google Scholar 

  • De Wever, B., & Strijbos, J. W. (2021). Roles for structuring groups for collaboration. In U. Cress, C. P. Rosé, A. Friend Wise, & J. Oshima (Eds.), International handbook of computer-supported collaborative learning (pp. 315–331). Springer.

    Chapter  Google Scholar 

  • De Wever, B., Van Keer, H., Schellens, T., & Valcke, M. (2010). Roles as a structuring tool in online discussion groups: The differential impact of different roles on social knowledge construction. Computers in Human Behavior, 26(4), 516–523. https://doi.org/10.1016/j.chb.2009.08.008

    Article  Google Scholar 

  • Dillenbourg, P., Baker, M., Blaye, A., & O'Malley, C. (1996). The evolution of research on collaborative learning. In E. Spada & P. Reiman (Eds.), Learning in humans and machine: Towards an interdisciplinary learning science (pp. 189–211). Elsevier.

    Google Scholar 

  • Dillenbourg, P., & Jermann, P. (2006). Designing integrative scripts. In F. Fischer, I. Kollar, H. Mandl, & J. Haake (Eds.), Scripting computer-supported collaborative learning: Cognitive, computational and educational perspectives (pp. 275–300). Springer.

    Google Scholar 

  • Dong, A., Jong, M. S. Y., & King, R. B. (2020). How does prior knowledge influence learning engagement? The mediating roles of cognitive load and help-seeking. Frontiers in Psychology, 11, 591203.

    Article  Google Scholar 

  • Dornfeld Tissenbaum, C., Gnesdilow, D., & Puntambekar, S. (2019). Emergent roles, collaboration, and conceptual outcomes for two eighth-grade groups in CSCL. In Lund, K., Niccolai, G., Lavoué, E., Hmelo-Silver, C., Gweon, G., and Baker, M. (Eds.), A wide lens: Combining embodied, enactive, extended, and embedded learning in collaborative settings, 13th international conference on computer supported collaborative learning (CSCL) 2019, Volume 2 (pp.672-675). : International Society of the Learning Sciences.

  • Erkens, M., Manske, S., Hoppe, H. U., & Bodemer, D. (2019). Awareness of complementary knowledge in CSCL: Impact on learners’ knowledge exchange in small groups. In H. Nakanishi, H. Egi, I. A. Chounta, H. Takada, S. Ichimura, & U. Hoppe (Eds.), Collaboration technologies and social computing. CRIWG+CollabTech 2019 (Lecture notes in computer science) (Vol. 11677, pp. 3–16). Springer. https://doi.org/10.1007/978-3-030-28011-6_1

    Chapter  Google Scholar 

  • Fernández Dobao, A. (2016). Peer interaction and learning: A focus on the silent learner. In M. Sato & S. Ballinger (Eds.), Peer interaction and second language learning: Pedagogical potential and research agenda (pp. 33–61). John Benjamins Publishing Company. https://doi.org/10.1075/lllt.45

    Chapter  Google Scholar 

  • Fernández, M., Wegerif, R., Mercer, N., & Rojas-Drummond, S. (2001). Re-conceptualizing “scaffolding” and the zone of proximal development in the context of symmetrical collaboration. Journal of Classroom Interaction, 36(2), 40–54.

    Google Scholar 

  • Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56–66. https://doi.org/10.1080/00461520.2012.748005

    Article  Google Scholar 

  • Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327–358. https://doi.org/10.1037/h0061470

    Article  Google Scholar 

  • Freeman, L., & Greenacre, L. (2011). An examination of socially destructive behaviors in group work. Journal of Marketing Education, 33(1), 5–17. https://doi.org/10.1177/0273475310389150

    Article  Google Scholar 

  • Geertz, C. (1973). The interpretation of cultures. Basic Books.

    Google Scholar 

  • Ghanbari, N., & Abdolrezapour, P. (2020). Group composition and learner ability in cooperative learning: A mixed-methods study. TESL-EJ, 24(2), n2.

    Google Scholar 

  • Gijlers, H., & De Jong, T. (2005a). Confronting ideas in collaborative scientific discovery learning. In American Educational Research Association (AERA) annual meeting 2005 (pp. 85).

  • Gijlers, H., & De Jong, T. (2005b). The relation between prior knowledge and students' collaborative discovery learning processes. Journal of Research in Science Teaching, 42(3), 264–282. https://doi.org/10.1002/tea.20056

    Article  Google Scholar 

  • Gillies, R. M. (2019). Promoting academically productive student dialogue during collaborative learning. International Journal of Educational Research, 97, 200–209. https://doi.org/10.1016/j.ijer.2017.07.014

    Article  Google Scholar 

  • Gnesdilow, D., Bopardikar, A., Sullivan, S., & Puntambekar, S. (2010). Exploring convergence of science ideas through collaborative concept mapping. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines: Proceedings of the 9th international conference of the learning sciences (ICLS 2010) - (Full papers) (Vol. 1, pp. 698–705). : International Society of the Learning Sciences.

  • Gnesdilow, D., Evenstone, A., Rutledge, J., Sullivan, S., & Puntambekar, S. (2013). Group work in the science classroom: How gender composition may affect individual performance. In N. Rummel, M. Kapur, M. Nathan, & S. Puntambekar (Eds.), To see the world and a grain of sand: Learning across levels of space, time and scale: CSCL2013 conference proceedings. Volume II- short papers, panels, posters, demos, & community events (pp. 34–37). International Society of the Learning Sciences.

    Google Scholar 

  • Harrison, D. A., & Klein, K. J. (2007). What's the difference? Diversity constructs as separation, variety, or disparity in organizations. Academy of Management Review, 32(4), 1199–1228. https://doi.org/10.5465/ amr.2007.26586096

    Article  Google Scholar 

  • Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29(1), 60–87. https://doi.org/10.3102/0162373707299706

    Article  Google Scholar 

  • Heitzmann, N., Stadler, M., Richters, C., Radkowitsch, A., Schmidmaier, R., Weidenbusch, M., & Fischer, M. R. (2023). Learners’ adjustment strategies following impasses in simulations effects of prior knowledge. Learning and Instruction, 83, 101632.

    Article  Google Scholar 

  • Howe, C., & Zachariou, A. (2019). Small-group collaboration and individual knowledge acquisition: The processes of growth during adolescence and early adulthood. Learning and Instruction, 60, 263–274. https://doi.org/10.1016/j.learninstruc.2017.10.007

    Article  Google Scholar 

  • Järvelä, S., & Hadwin, A. F. (2013). New frontiers: Regulating learning in CSCL. Educational Psychologist, 48(1), 25–39. https://doi.org/10.1080/00461520.2012.748006

    Article  Google Scholar 

  • Järvelä, S., Hadwin, A., Malmberg, J., & Miller, M. (2018). Contemporary perspectives of regulated learning in collaboration. In F. Fischer, C. E. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the learning sciences (pp. 127–136). Routledge.

    Chapter  Google Scholar 

  • Järvelä, S., Järvenoja, H., & Malmberg, J. (2019). Capturing the dynamic and cyclical nature of regulation: Methodological progress in understanding socially shared regulation in learning. International Journal of Computer-Supported Collaborative Learning, 14(4), 425–441. https://doi.org/10.1007/s11412-019-09313-2

    Article  Google Scholar 

  • Jossberger, H., Breckwoldt, J., & Gruber, H. (2022). Promoting expertise through simulation (PETS): A conceptual framework. Learning and Instruction, 82, 101686.

    Article  Google Scholar 

  • Kanika, C. S., Chakraborty, P., & Madan, M. (2022). Effect of different grouping arrangements on students’ achievement and experience in collaborative learning environment. Interactive Learning Environments, 1-13. https://doi.org/10.1080/10494820.2022.2036764

  • Kim, J. S., Anderson, C. J., & Keller, B. (2013). Multilevel analysis of assessment data. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis (pp. 389–425). Routledge.

    Google Scholar 

  • Kirschner, P. A., Sweller, J., Kirschner, F., Zambrano, R., & J. (2018). From cognitive load theory to collaborative cognitive load theory. International Journal of Computer-Supported Collaborative Learning, 13(2), 213–233. https://doi.org/10.1007/s11412-018-9277-y

    Article  Google Scholar 

  • Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., Häkkinen, P., & Fischer, F. (2007). Specifying computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning, 2(2), 211–224. https://doi.org/10.1007/s11412-007-9014-4

    Article  Google Scholar 

  • Kollar, I., Fischer, F., & Hesse, F. W. (2006). Collaboration scripts: A conceptual analysis. Educational Psychology Review, 18(2), 159–185. https://doi.org/10.1007/s10648-006-9007-2

    Article  Google Scholar 

  • Kozlov, M. D., & Große, C. S. (2016). Online collaborative learning in dyads: Effects of knowledge distribution and awareness. Computers in Human Behavior, 59, 389–401. https://doi.org/10.1016/j.chb.2016.01.043

    Article  Google Scholar 

  • Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 19(3), 335–353. https://doi.org/10.1016/S0747-5632(02)00057-2

    Article  Google Scholar 

  • Kuhn, D. (2015). Thinking together and alone. Educational Researcher, 44(1), 46–53. https://doi.org/10.3102/0013189X15569530

    Article  Google Scholar 

  • Law, N., Järvelä, S., & Rosé, C. (2021). Exploring multilayered collaboration designs. International Journal of Computer-Supported Collaborative Learning, 16(1), 1–5. https://doi.org/10.1007/s11412-021-09342-w

    Article  Google Scholar 

  • Le, H., Janssen, J., & Wubbels, T. (2018). Collaborative learning practices: Teacher and student perceived obstacles to effective student collaboration. Cambridge Journal of Education, 48(1), 103–122. https://doi.org/10.1080/0305764X.2016.1259389

    Article  Google Scholar 

  • Lee, J. Y., Donkers, J., Jarodzka, H., & Van Merriënboer, J. J. (2019). How prior knowledge affects problem-solving performance in a medical simulation game: Using game-logs and eye-tracking. Computers in Human Behavior, 99, 268–277.

    Article  Google Scholar 

  • Lin, Y. T., Wu, C. C., Chen, Z. H., & Ku, P. Y. (2020). How gender pairings affect collaborative problem solving in social-learning context. Educational Technology & Society, 23(4), 30–44.

    Google Scholar 

  • Liu, H. C., Andre, T., & Greenbowe, T. (2008). The impact of learner’s prior knowledge on their use of chemistry computer simulations: A case study. Journal of Science Education and Technology, 17, 466–482.

    Article  Google Scholar 

  • Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning with technology: A meta-analysis. Review of Educational Research, 71(3), 449–521. https://doi.org/10.3102/00346543071003449

    Article  Google Scholar 

  • Lou, Y., Abrami, P. C., Spence, J. C., Poulsen, C., Chambers, B., & d’Apollonia, S. (1996). Within-class grouping: A meta-analysis. Review of Educational Research, 66(4), 423–458. https://doi.org/10.3102/00346543066004423

    Article  Google Scholar 

  • Luckin, R., & Cukurova, M. (2019). Learning sciences beyond cognition: Exploring student interactions in collaborative problem solving. In R. Feldman (Ed.), Learning science: Theory, research, and practice. McGraw-Hill Education.

    Google Scholar 

  • Manske, S., Hecking, T., Hoppe, U., Chounta, I. A., & Werneburg, S. (2015). Using differences to make a difference: A study in heterogeneity of learning groups. In O. Lindwall, P. Häkkinen, T. Koschman, P. Tchounikine, P. & S. Ludvigsen (Eds.), Exploring the material conditions of learning: The computer supported collaborative learning (CSCL) conference 2015, Volume 2. : The International Society of the Learning Sciences.

  • Manske, S., & Hoppe, H. U. (2017 Managing knowledge diversity: Towards automatic semantic group formation. In 2017 IEEE 17th international conference on advanced learning technologies (ICALT) (pp. 330-332). IEEE.

  • Martin, N. D., Gnesdilow, D., & Puntambekar, S. (2015). Peer scaffolding to learn science in symmetrical groups collaborating over time. In O. Lindwall, P. Häkkinen, T. Koschmann, P. Tchounikine, & S. Ludvigsen (Eds.), Exploring the material conditions of learning: The computer supported collaborative learning (CSCL) conference 2015, Volume 1 (pp. 340–347). The International Society of the Learning Sciences.

  • Marton, F. (1986). Phenomenography—A research approach to investigating different understandings of reality. Journal of Thought, 28–49.

  • Menekse, M., & Chi, M. T. (2018). The role of collaborative interactions versus individual construction on students’ learning of engineering concepts. European Journal of Engineering Education, 44(5), 702–725. https://doi.org/10.1080/03043797.2018.1538324

    Article  Google Scholar 

  • Mercer, N., Hennessy, S., & Warwick, P. (2019). Dialogue, thinking together and digital technology in the classroom: Some educational implications of a continuing line of inquiry. International Journal of Educational Research, 97, 187–199. https://doi.org/10.1016/j.ijer.2017.08.007

    Article  Google Scholar 

  • Mercer, N., & Littleton, K. (2007). Dialogue and the development of children's thinking: A sociocultural approach. Routledge.

    Book  Google Scholar 

  • Micari, M., Van Winkle, Z., & Pazos, P. (2016). Among friends: The role of academic-preparedness diversity in individual performance within a small-group STEM learning environment. International Journal of Science Education, 38(12), 1904–1922. https://doi.org/10.1080/09500693.2016.1218091

    Article  Google Scholar 

  • Michaels, S., O’Connor, C., & Resnick, L. B. (2008). Deliberative discourse idealized and realized: Accountable talk in the classroom and in civic life. Studies in Philosophy and Education, 27(4), 283–229. https://doi.org/10.1007/s11217-007-9071-1

    Article  Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (An expanded sourcebook. ed.). Sage.

  • Murphy, P. K., Greene, J. A., Firetto, C. M., Li, M., Lobczowski, N. G., Duke, R. F., & Croninger, R. M. (2017). Exploring the influence of homogeneous versus heterogeneous grouping on students’ text-based discussions and comprehension. Contemporary Educational Psychology, 51, 336–355. https://doi.org/10.1016/j.cedpsych.2017.09.003

    Article  Google Scholar 

  • Nihalani, P. K., Wilson, H. E., Thomas, G., & Robinson, D. H. (2010). What determines high-and low-performing groups? The superstar effect. Journal of Advanced Academics, 21(3), 500–529. https://doi.org/10.1177/ 1932202X1002100306

    Article  Google Scholar 

  • Nebel, S., Schneider, S., Beege, M., Kolda, F., Mackiewicz, V., & Rey, G. D. (2017). You cannot do this alone! Increasing task interdependence in cooperative educational videogames to encourage collaboration. Educational Technology Research and Development, 65(4), 993–1014. https://doi.org/10.1007/s11423-017-9511-8

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. (2018). How people learn II: Learners, contexts, and cultures. The National Academies Press., 10(17226/24783).

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

  • Oliveira, A. W., Boz, U., Broadwell, G. A., & Sadler, T. D. (2014). Student leadership in small group science inquiry. Research in Science & Technological Education, 32(3), 281–297. https://doi.org/10.1080/ 02635143.2014.942621

    Article  Google Scholar 

  • Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), 117–175. https://doi.org/10.1207/s1532690xci0102_1

    Article  Google Scholar 

  • Prinsen, F., Volman, M. L., & Terwel, J. (2007). The influence of learner characteristics on degree and type of participation in a CSCL environment. British Journal of Educational Technology, 38(6), 1037–1055. https://doi.org/10.1111/j.1467-8535.2006.00692.x

    Article  Google Scholar 

  • Puntambekar, S. (2013). Mixed methods for analyzing collaborative learning. In C. E. Hmelo-Silver, C. A. Chinn, C. K. K. Chan, & A. O’Donnell (Eds.), The international handbook of collaborative learning (pp. 187–195). Routledge.

    Google Scholar 

  • Puntambekar, S. (2022). Distributed scaffolding: Scaffolding students in classroom environments. Educational Psychology Review, 34(1), 451–472.

    Article  Google Scholar 

  • Puntambekar, S., & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: Helping students learn science by design. Journal of Research in Science Teaching, 42(2), 185–217.

    Article  Google Scholar 

  • Puntambekar, S., & Young, M. F. (2003). Moving toward a theory of CSCL. In U. Hoppe, B. Wasson, & S. Ludvigson, (Eds.), designing for change in networked learning: Computer supported collaborative learning conference 2003: (pp. 503-512). IOS Press: Amsterdam. [presented in the closing plenary session at CSCL 2003].

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (Vol. 1, 2nd. ed.). Sage Publications.

  • Retnowati, E., Ayres, P., & Sweller, J. (2018). Collaborative learning effects when students have complete or incomplete knowledge. Applied Cognitive Psychology, 32(6), 681–692. https://doi.org/10.1002/acp.3444

    Article  Google Scholar 

  • Richters, C., Stadler, M., Radkowitsch, A., Behrmann, F., Weidenbusch, M., Fischer, M. R., ... & Fischer, F. (2022). Making the rich even richer? Interaction of structured reflection with prior knowledge in collaborative medical simulations. In A. Weinberger, W. Chen, D. Hernández-Leo & B. Chen (Eds), International collaboration toward educational innovation for all: Overarching Research, Development, and Practices: Proceedings of the 15th International Conference on Computer-Supported Collaborative Learning (CSCL) 2022. (pp. 155-162). Japan: The International Society for the Learning Science

  • Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. Oxford University Press.

    Book  Google Scholar 

  • Rozenszayn, R., & Ben-Zvi Assaraf, O. (2011). When collaborative learning meets nature: Collaborative learning as a meaningful learning tool in the ecology inquiry based project. Research in Science Education, 41(1), 123–146. https://doi.org/10.1007/s11165-009-9149-6

    Article  Google Scholar 

  • R Core Team. (2023). R: A language and environment for statistical computing [computer software]. R Foundation for Statistical Computing https://www.R-project.org/

    Google Scholar 

  • Roscoe, R. D., & Chi, M. T. (2007). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors’ explanations and questions. Review of Educational Research, 77(4), 534–574. https://doi.org/10.3102/0034654307309920

    Article  Google Scholar 

  • Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting collaborative problem solving in computer-mediated settings. The Journal of the Learning Sciences, 14(2), 201–241. https://doi.org/10.1207/s15327809jls1402_2

    Article  Google Scholar 

  • Rummel, N., Hmelo-Silver, C., Weinberger, A., Stegmann, K., Fischer, F., Diziol, D., Kahrimanis, G., Guevara, T., Holz, J., Spada, H., Fiotakis, G., Jeong, H., & Law, N. (2008). Using contrasting cases to relate collaborative processes and outcomes in CSCL. In Kanselaar, G., Jonker, V., Kirschner, P. A., & Prins, F. J. (Eds.), International perspectives in the learning sciences: Cre8ing a learning world. Proceedings of the Eighth International Conference for the Learning Sciences – ICLS 2008, Volume 3 (pp. 346-353). Utrecht, The Netherlands: International Society of the Learning Sciences.

  • Sadita, L., Hirashima, T., Hayashi, Y., Furado, P. G., Junus, K., & Santoso, H. B. (2020). The effect of differences in group composition on knowledge transfer, group achievement, and learners’ affective responses during reciprocal concept mapping with the kit-build approach. Research and Practice in Technology Enhanced Learning, 15(1), 1–19. https://doi.org/10.1186/s41039-020-00133-9

    Article  Google Scholar 

  • Saleh, M., Lazonder, A. W., & de Jong, T. (2005). Effects of within-class ability grouping on social interaction, achievement, and motivation. Instructional Science, 33(2), 105–119. https://doi.org/10.1007/s11251-004-6405-z

    Article  Google Scholar 

  • Salinas, E. Y., Williams, A. E., & King, C. E. (2019). Effect of controlling group heterogeneity on student performance in a graphical programming course. In In 2019 IEEE Frontiers in education conference (FIE) (pp. 1–8). IEEE. https://doi.org/10.1109/FIE43999.2019.9028593

    Chapter  Google Scholar 

  • Sangin, M., Molinari, G., Nüssli, M. A., & Dillenbourg, P. (2008). Knowing what the peer knows: The differential effect of knowledge awareness on collaborative learning performance of asymmetric pairs. In P. Dillenbourg & M. Specht (Eds.), Times of convergence: Technologies across learning contexts EC-TEL 2008 (Lecture notes in computer science) (Vol. 5192, pp. 384–394). Springer. https://doi.org/10.1007/978-3-540-87605-2_43.

  • Schmitz, M. J., & Winskel, H. (2008). Towards effective partnerships in a collaborative problem-solving task. British Journal of Educational Psychology, 78(4), 581–596. https://doi.org/10.1348/000709908X281619

    Article  Google Scholar 

  • Schwarz, B. B., Neuman, Y., & Biezuner, S. (2000). Two wrongs may make a right... If they argue together! Cognition and Instruction, 18(4), 461–494. https://doi.org/10.1207/S1532690XCI1804_2

    Article  Google Scholar 

  • Sherf, E. N., Sinha, R., Tangirala, S., & Awasty, N. (2018). Centralization of member voice in teams: Its effects on expertise utilization and team performance. Journal of Applied Psychology, 103(8), 813. https://doi.org/10.1037/apl0000305

    Article  Google Scholar 

  • Shirouzu, H., Miyake, N., & Masukawa, H. (2002). Cognitively active externalization for situated reflection. Cognitive Science, 26(4), 469–501. https://doi.org/10.1207/s15516709cog2604_3

    Article  Google Scholar 

  • Shtulman, A., & Young, A. G. (2017). Bridging a conceptual divide: How peer collaboration facilitates science learning. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. J. Davelaar (Eds.), Proceedings of the 39th annual conference of the cognitive science society (pp. 3149–3154). Cognitive Science Society.

    Google Scholar 

  • Simonsmeier, B. A., Flaig, M., Deiglmayr, A., Schalk, L., & Schneider, M. (2022). Domain-specific prior knowledge and learning: A meta-analysis. Educational Psychologist, 57(1), 31–54.

    Article  Google Scholar 

  • Slof, B., van Leeuwen, A., Janssen, J., & Kirschner, P. A. (2021). Mine, ours, and yours: Whose engagement and prior knowledge affects individual achievement from online collaborative learning? Journal of Computer Assisted Learning, 37(1), 39–50. https://doi.org/10.1111/jcal.12466

    Article  Google Scholar 

  • Soller, A., Martinez, A., Jermann, P., & Muehlenbrock, M. (2005). From mirroring to guiding: A review of state of the art technology for supporting collaborative learning. International Journal of Artificial Intelligence in Education, 15(4), 261–290.

    Google Scholar 

  • Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 409–426). Cambridge University Press.

  • Strijbos, J. W., & De Laat, M. F. (2010). Developing the role concept for computer-supported collaborative learning: An explorative synthesis. Computers in Human Behavior, 26(4), 495–505. https://doi.org/10.1016/j.chb.2009.08.014

    Article  Google Scholar 

  • Summers, M., & Volet, S. (2010). Group work does not necessarily equal collaborative learning: Evidence from observations and self-reports. E European Journal of Psychology of Education, 25, 473–492. https://doi.org/10.1007/s10212-010-0026-5

    Article  Google Scholar 

  • Tchounikine, P. (2016). Contribution to a theory of CSCL scripts: Taking into account the appropriation of scripts by learners. International Journal of Computer-Supported Collaborative Learning, 11(3), 349–369. https://doi.org/10.1007/s11412-016-9240-8

    Article  Google Scholar 

  • Tomasello, M. (2016). Cultural learning redux. Child Development, 87(3), 643–653. https://doi.org/10.1111/cdev.12499

    Article  Google Scholar 

  • Van Blankenstein, F. M., Dolmans, D. H., van der Vleuten, C. P., & Schmidt, H. G. (2011). Which cognitive processes support learning during small-group discussion? The role of providing explanations and listening to others. Instructional Science, 39(2), 189–204. https://doi.org/10.1007/s11251-009-9124-7

    Article  Google Scholar 

  • Van Leeuwen, A., Janssen, J., Erkens, G., & Brekelmans, M. (2015). Teacher regulation of cognitive activities during student collaboration: Effects of learning analytics. Computers & Education, 90, 80–94. https://doi.org/10.1016/j.compedu.2015.09.006

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: Development of higher psychological processes. Harvard University Press.

    Google Scholar 

  • Webb, N. M. (1991). Task-related verbal interaction and mathematics learning in small groups. Journal for Research in Mathematics Education, 22(5), 366–389. https://doi.org/10.5951/jresematheduc.22.5.0366

    Article  Google Scholar 

  • Webb, N. M. (1997). Assessing students in small collaborative groups. Theory Into Practice, 36(4), 205–213.

    Article  Google Scholar 

  • Webb, N. M., Nemer, K. M., & Zuniga, S. (2002). Short circuits or superconductors? Effects of group composition on high-achieving students’ science assessment performance. American Educational Research Journal, 39(4), 943–989. https://doi.org/10.3102/00028312039004943

    Article  Google Scholar 

  • Wells, G. (1999). Dialogic inquiry: Towards a socio-cultural practice and theory of education. Cambridge University Press.

    Book  Google Scholar 

  • Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

  • Wiedmann, M., Leach, R. C., Rummel, N., & Wiley, J. (2012). Does group composition affect learning by invention? Instructional Science, 40(4), 711–730. https://doi.org/10.1007/s11251-012-9204-y

    Article  Google Scholar 

  • Wing-yi Cheng, R., Lam, S. F., & Chung-yan Chan, J. (2008). When high achievers and low achievers work in the same group: The roles of group heterogeneity and processes in project-based learning. British Journal of Educational Psychology, 78(2), 205–221. https://doi.org/10.1348/ 000709907X218160

    Article  Google Scholar 

  • Wise, A. F., & Schwarz, B. B. (2017). Visions of CSCL: Eight provocations for the future of the field. International Journal of Computer-Supported Collaborative Learning, 12(4), 423–467. https://doi.org/10.1007/s11412-017-9267-5

    Article  Google Scholar 

  • Young, A., & Tedick, D. J. (2016). Collaborative dialogue in a two-way Spanish/English immersion classroom. In M. Sato & S. Ballinger (Eds.), Peer interaction and second language learning: Pedagogical potential and research agenda (pp. 135–160). John Benjamin Publishing Company.

    Chapter  Google Scholar 

  • Zhao, J., Lin, L., Sun, J., Zheng, X., & Yin, J. (2018). Students’ engagement in a science classroom: Does knowledge diversity matter? The Journal of Educational Research, 1–8.

  • Zhang, L., KaLyuga, S., Lee, C., & Lei, C. (2016). Effectiveness of collaborative learning of computer programming under different learning group formations according to students' prior knowledge: A cognitive load perspective. Journal of Interactive Learning Research, 27(2), 171–192.

    Google Scholar 

  • Zhang, L., & Li, X. (2016). How to reduce the negative impacts of knowledge heterogeneity in engineering design team: Exploring the role of knowledge reuse. International Journal of Project Management, 34(7), 1138–1149. https://doi.org/10.1016/j.ijproman.2016.05.009

    Article  Google Scholar 

  • Zheng, J., Xing, W., & Zhu, G. (2019). Examining sequential patterns of self-and socially shared regulation of STEM learning in a CSCL environment. Computers & Education, 136, 34–48. https://doi.org/10.1016/j.compedu.2019.03.005

    Article  Google Scholar 

  • Zillmer, N., & Kuhn, D. (2018). Do similar-ability peers regulate one another in a collaborative discourse activity? Cognitive Development, 45, 68–76. https://doi.org/10.1016/j.cogdev.2017.12.002

    Article  Google Scholar 

  • Zuckerman, G. (2003). The learning activity in the first years of schooling: The developmental path towards reflection. In A. Kozulin, B. Gindis, V. S. Ageyev, & S. M. Miller (Eds.), Vygotsky’s educational theory in cultural context (pp. 177–199). Cambridge University Press.

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to thank the teachers and students who participated in this study. The research reported in this paper is supported by a National Science Foundation DRL grant (#1418044). Preliminary HLM analyses of the data in this manuscript were presented at CSCL 2019 in the paper Understanding the Effect of Group Variance on Learning.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Puntambekar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Make Your Own Compost! Test Questions

Appendix A: Make Your Own Compost! Test Questions

figure afigure afigure afigure a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puntambekar, S., Gnesdilow, D. & Yavuz, S. Understanding the effect of differences in prior knowledge on middle school students’ collaborative interactions and learning. Intern. J. Comput.-Support. Collab. Learn 18, 531–573 (2023). https://doi.org/10.1007/s11412-023-09405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11412-023-09405-0

Keywords

Navigation