Skip to main content
Log in

Unknown malcode detection and the imbalance problem

  • Original Paper
  • Published:
Journal in Computer Virology Aims and scope Submit manuscript

Abstract

The recent growth in network usage has motivated the creation of new malicious code for various purposes. Today’s signature-based antiviruses are very accurate for known malicious code, but can not detect new malicious code. Recently, classification algorithms were used successfully for the detection of unknown malicious code. But, these studies involved a test collection with a limited size and the same malicious: benign file ratio in both the training and test sets, a situation which does not reflect real-life conditions. We present a methodology for the detection of unknown malicious code, which examines concepts from text categorization, based on n-grams extraction from the binary code and feature selection. We performed an extensive evaluation, consisting of a test collection of more than 30,000 files, in which we investigated the class imbalance problem. In real-life scenarios, the malicious file content is expected to be low, about 10% of the total files. For practical purposes, it is unclear as to what the corresponding percentage in the training set should be. Our results indicate that greater than 95% accuracy can be achieved through the use of a training set that has a malicious file content of less than 33.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filiol E., Josse S.: A statistical model for undecidable viral detection. J. Comput. Virol. 3, 65–74 (2007)

    Article  Google Scholar 

  2. Filiol E.: Malware pattern scanning schemes secure against black-box analysis. J. Comput. Virol. 2, 35–50 (2006)

    Article  Google Scholar 

  3. Gryaznov, D.: Scanners of the year 2000: Heuritics. In: Proceedings of the 5th International Virus Bulletin (1999)

  4. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods for detection of new malicious executables. In: Proceedings of the IEEE Symposium on Security and Privacy, 178–184 (2001)

  5. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram based detection of new malicious code. In: Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04) (2004)

  6. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470–478. ACM Press, New York (2004)

  7. Mitchell T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  8. Henchiri, O., Japkowicz, N.: A feature selection and evaluation scheme for computer virus detection. In: Proceedings of ICDM-2006, pp. 891–895. Hong Kong (2006)

  9. Reddy D., Pujari A.: N-gram analysis for computer virus detection. J. Comput. Virol. 2, 231–239 (2006)

    Article  Google Scholar 

  10. Kubat, M., Matwin, S.: Addressing the curse of imbalanced data sets: one-sided sampling. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 179–186 (1997)

  11. Fawcett T.E., Provost F.: Adaptive fraud detection. Data Min. Knowl. Discov. 1(3), 291–316 (1997)

    Article  Google Scholar 

  12. Ling, C.X., Li, C.: Data mining for direct marketing: problems and solutions. In: Proceedings of the Fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 73–79 (1998)

  13. Chawla N.V., Japkowicz N., Kotcz A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

    Article  Google Scholar 

  14. Japkowicz N., Stephen S.: The class imbalance problem: a systematic study. Intel. Data Anal. J. 6, 5 (2002)

    Google Scholar 

  15. Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intel. Res. (JAIR) 16, 321–357 (2002)

    MATH  Google Scholar 

  16. Lawrence S., Burns I., Back A.D., Tsoi A.C., Giles C.L.: Neural network classification and unequal prior class probabilities. In: Orr, G., Muller, R.-R., Caruana, R.(eds) Tricks of the Trade. Lecture Notes in Computer Science State-of-the-Art Surveys, pp. 299–314. Springer, Heidelberg (1998)

    Google Scholar 

  17. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn unbalanced data. Technical Report 666, Statistics Department, University of California at Berkeley (2004)

  18. Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach—a case study in intensive care monitoring. In: Proceedings of the International Conference of Machine Learning, pp. 268–277 (1999)

  19. Weiss G., Provost F.: Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intel. Res. 19, 315–354 (2003)

    MATH  Google Scholar 

  20. Salton G., Wong A., Yang C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613–620 (1975)

    Article  MATH  Google Scholar 

  21. Golub T., Slonim D., Tamaya P., Huard C., Gaasenbeek M., Mesirov J., Coller H., Loh M., Downing J., Caligiuri M., Bloomfield C., Lander E.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  22. Bishop C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  23. Quinlan J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., San Francisco (1993)

    Google Scholar 

  24. Witten I.H., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, Inc., San Francisco (2005)

    MATH  Google Scholar 

  25. Domingos P., Pazzani M.: On the optimality of simple Bayesian classifier under zero-one loss. Mach. Learn. 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  26. Freund Y., Schapire R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Burges C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 955–974 (1998)

    Article  Google Scholar 

  28. Joachims, T.: Making large-scale support vector machine learning practical. Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1998)

  29. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001)

  30. Provost, F., Fawcett, T.: Robust classification systems for imprecise environments. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) (1998)

  31. Kubat M., Holte R., Matwin S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30, 195–215 (1998)

    Article  Google Scholar 

  32. Karim Md., Walenstein A., Lakhotia A., Parida L.: Malware phylogeny generation using permutations of code. J. Comput. Virol. 1, 13–23 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Moskovitch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moskovitch, R., Stopel, D., Feher, C. et al. Unknown malcode detection and the imbalance problem. J Comput Virol 5, 295–308 (2009). https://doi.org/10.1007/s11416-009-0122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11416-009-0122-8

Keywords

Navigation