Skip to main content
Log in

Secure and light IoT protocol (SLIP) for anti-hacking

  • Original Paper
  • Published:
Journal of Computer Virology and Hacking Techniques Aims and scope Submit manuscript

Abstract

In the elemental technologies, it is necessary to realize the Internet service of things (IoT), sensors and devices, network, platform (hardware platforms, open software platform, such as specific OS platforms). Web services, data analysis and prediction, big data processing, such as security and privacy protection technology, there are a variety of techniques. These elements technology provide a specific function. The element technology is integrated with each other. However, by several techniques are integrated, it can be problems with integration of security technologies that existed for each element technology. Even if individual technologies basic security features are constituting Internet Services (CIA: Confidentiality, integrity, authentication or authorization). It also offers security technology not connected to each other. Therefore, I will look at the security technology and proposes a lightweight routing protocol indispensable for realizing a secure Internet services things.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hadim, S., Mohamed, N.: Middleware: middleware challenges and approaches for wireless sensor networks. IEEE distrib. syst. online. 7(3), 1–10 (2006)

    Article  Google Scholar 

  2. Raza, S., et al.: Lithe: lightweight secure CoAP for the internet of things. IEEE Sens. J. 13(10), 3711–3720 (2013)

    Article  Google Scholar 

  3. Kim, D.-C., et al.: LSH: a new fast secure hash function family. In: Proceedings of ICISC 2014, LNCS 8949, pp. 286–313 (2015)

  4. Cheon, J.H., Lee, H.T., Seo, J.H.: A new additive homomorphic encryption based on the co-ACD problem. In: Proceedings of ACM SIGSAC Conference Computer and Communication Security, pp. 287–298 (2014)

  5. Riahi, A.: A systemic and cognitive approach for IoT security. In: Proceedings of International Conference Computing, Networking, and Communication (2014)

  6. Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  7. Hachem, S., Teixeira, T., Issarny, V.: Ontologies for the internet of things. In: Proceedings of the 8th Middleware Doctoral Symposium. ACM (2011)

  8. Sundmaeker, H., et al.: Vision and challenges for realizing the Internet of Things. In: Cluster of European Research Projects on the Internet of Things, European Commission (2010)

  9. Roman, R., Najera, P., Lopez, J.: Securing the internet of things. Computer. 44(9), 51–58 (2011)

    Article  Google Scholar 

  10. Hamad, F., Smalov, L., James, A.: Energy-aware security in M-commerce and the internet of things. IETE Tech. Rev. 26(5), 357–362 (2009)

    Article  Google Scholar 

  11. Song, B., Mitchell, C.J.: RFID authentication protocol for low-cost tags. In: ACM Conference on Wireless network Security (2008)

  12. Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. In: Proceedings of Mobi-Com, pp. 128–139 (2008)

  13. Montenegro, G., Castelluccia, C.: Crypto-based identifiers (CBIDs): concepts and applications. ACM Trans. Info. Syst. Sec. 7(1), 97–127 (2004)

    Article  Google Scholar 

  14. Xiaohui, X.: Study on security problems and key technologies of the internet of things. In: 2013 Fifth International Conference on Computational and Information Sciences (ICCIS). IEEE (2013)

  15. Oh, S.Y., Ghose, S., Jeong, Y., Ryu, J.K., Han, J.: Convergence security systems. J. Comput. Virol. Hacking Tech. 11(3), 119–121 (2015)

    Article  Google Scholar 

  16. Hong, S.: Efficient and secure DNS cyber shelter on DDoS attacks. J. Comput. Virol. Hacking Tech. 11(3), 129–136 (2015)

    Article  Google Scholar 

  17. Wang, L.-C.: Enhancing construction quality inspection and management using RFID technology. Autom. Constr. 17(4), 467–479 (2008)

    Article  Google Scholar 

  18. Chen, M., et al.: Spatial-temporal relation-based energy-efficient reliable routing protocol in wireless sensor networks. Int. J. Sens. Netw. 5(3), 19–141 (2009)

    Article  Google Scholar 

  19. Suo, H., et al.: Security in the internet of things: a review. In: 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE), Vol. 3. IEEE (2012)

  20. Raynal, F., Delugré, G., Aumaitre, D.: Malicious origami in PDF. J. Comput. Virol. 6(4), 289–315 (2010)

    Article  Google Scholar 

  21. Haitao, L.I.U.B.C.H.W., Ying, F.U.: Security analysis and security model research on IOT. Comput. Digit. Eng. 11(6), 56–61 (2012)

    Google Scholar 

  22. Venkatesh, B., Choudhury, S.H., Nagaraja, S., Balakrishnan, N.: BotSpot: fast graph based identification of structured P2P bots. J. Comput. Virol. Hacking Tech. 11(4), 247–261 (2015)

    Article  Google Scholar 

  23. WAN, J., et al.: From machine-to-machine communications towards cyber-physical systems. Comput. Sci. Inf. Syst. 10(3), 1105–1128 (2013)

    Article  Google Scholar 

  24. De Turck, F., et al.: A generic middleware-based platform for scalable cluster computing. Future Gener. Comput. Syst. 18(4), 549–560 (2002)

    Article  MATH  Google Scholar 

  25. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Concurr. Comput. Pract. Exp. 18(10), 1039–1065 (2006)

    Article  Google Scholar 

  26. Tan, Y.S., Han, J.J.: Service-oriented middleware model for internet of things. Comput. Sci. 38(3), 1–7 (2011)

    Google Scholar 

  27. Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1), 25–33 (2006)

    Article  Google Scholar 

  28. Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications–explosives, weapons and drugs. Semicond. Sci. Technol. 20, S266–S280 (2005)

    Article  Google Scholar 

  29. Wan, J., et al.: Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Netw. 27(5), 56–61 (2013)

    Article  Google Scholar 

  30. Egele, M., et al.: A survey on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv. (CSUR). 44(2), 6 (2012)

  31. Makris, P., Skoutas, D.N., Skianis, C.: A survey on context-aware mobile and wireless networking: on networking and computingenvironments’ integration. IEEE Commun. Surv. Tutor. 15(1), 362–386 (2013)

    Article  Google Scholar 

  32. Talwar, M.: Security issues in internet of things. Int. J. Emerg. Technol. 6(2), 364 (2015)

    MathSciNet  Google Scholar 

  33. Steer, D., Strawczynski, L., Diffie, W., Wiener, M.: A secure audio teleconference system. In: CRYPTO’ 88 (1988)

  34. Hamon, V.: Android botnets for multi-targeted attacks. J. Comput. Virol. Hacking Tech 11(4), 193–202 (2015)

    Article  Google Scholar 

  35. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for dynamic collaborative groups. In: ACM CCS (2000)

Download references

Acknowledgements

This research was supported by 2016 Baekseok University Research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghyuck Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S. Secure and light IoT protocol (SLIP) for anti-hacking. J Comput Virol Hack Tech 13, 241–247 (2017). https://doi.org/10.1007/s11416-017-0295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11416-017-0295-5

Keywords

Navigation