Skip to main content
Log in

Data protection in heterogeneous big data systems

  • Original Paper
  • Published:
Journal of Computer Virology and Hacking Techniques Aims and scope Submit manuscript

Abstract

Modern Big Data systems are notable for their scale and, often, their distributed organization. A feature of a number of Big Data systems is the use of heterogeneous data processing tools. These are different DBMS and streaming processing tools with different data granularity. The input information may be repeatedly fragmented and re-grouped as it moves between storage locations. In this case, the problems of data integrity, access control and auditing cannot be solved by traditional methods. This paper considers the security of heterogeneous Big Data systems based on distributed ledger technologies and verifiable zero-knowledge operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh, D., Nath, I., Singh, P.K.: Security and privacy challenges in big data. In: Information Resources Management Association (eds) Research Anthology on Privatizing and Securing Data. IGI Global, pp. 15-41 (2021). https://doi.org/10.4018/978-1-7998-8954-0.ch002

  2. Poltavtseva, M.A.: A consistent approach to building secure big data processing and storage systems. Autom. Control Comput. Sci. 53, 914–921 (2019). https://doi.org/10.3103/S0146411619080273

    Article  Google Scholar 

  3. Poltavtseva M.A. Evolution of data management systems and their security. In: Proceedings of the 2019 International Conference on Engineering Technologies and Computer Science: Innovation and Application, pp 25–29. EnT (2019). https://doi.org/10.1109/EnT.2019.00010

  4. Zhang, C. et al.: Blockchain based big data security protection scheme. In: 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 574–578. IEEE (2020 )

  5. Poltavtseva, M.A., Zegzhda, D.P., Kalinin, M.O.: Big data management system security threat model. Autom. Control Comput. Sci. 53, 903–913 (2019). https://doi.org/10.3103/S0146411619080261

    Article  Google Scholar 

  6. Yarali, A., Joyce, R., Dixon, B.: Ethics of big data: privacy, security and trust. Wirel. Telecommun. Symp. (WTS) 2020, 1–7 (2020). https://doi.org/10.1109/WTS48268.2020.9198734

    Article  Google Scholar 

  7. Goddijn, I., Kouns, J.: 2020 Q1 report data breach QuickView. In: RiskBased Security (2020)

  8. Cost of a data breach report 2021. IBM. https://www.ibm.com/security/data-breach. Accessed 24 December 2021

  9. Poltavtseva, M.A., Kalinin, M.O.: Conceptual data modeling using aggregates to ensure large-scale distributed data management systems security. In: Kotenko I., Badica C., Desnitsky V., El Baz D., Ivanovic M. (eds) Intelligent Distributed Computing XIII. IDC 2019. Studies in Computational Intelligence, vol. 868. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32258-8_5

  10. Luo, C.: Computer data storage and management platform based on big data. J. Phys.: Conf. Ser. 2066, 1–6 (2021). https://doi.org/10.1088/1742-6596/2066/1/012022

    Article  Google Scholar 

  11. Fernandez, E.B. et al.: The secure three-tier architecture pattern. In: 2008 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 555–560. IEEE (2008)

  12. Dinesh, G., Gupta, A.K., Priya, M.: Big data over cloud, its infrastructure and security. Recent Adv. Comput. Sci. Commun. 14(5), 1506–1507 (2021). https://doi.org/10.2174/266625581405210129162256

    Article  Google Scholar 

  13. Li, J., Wu, J., Jiang, G., Srikanthan, T.: Blockchain-based public auditing for big data in cloud storage. Inf. Process. Manag. 57(6), 1023082 (2020). https://doi.org/10.1016/j.ipm.2020.102382

    Article  Google Scholar 

  14. Livshitz, I.I., Lontsikh, P.A., Golovina, E.Y., Kunakov, E.P., Kozhukhova, V.V.: Security assessment process of IT-components for cloud infrastructure. In: International Conference Quality Management, Transport and Information Security. Information Technologies (IT &QM &IS) vol. 2020, pp. 110–113 (2020). https://doi.org/10.1109/ITQMIS51053.2020.9322976

  15. Li, J., Liu, Y., Zhang, Z., Chao, HC: A method of data integrity check and repair in big data storage platform. In: Chen, Y., Nakano, T., Lin, L., Mahfuz, M., Guo, W. (eds) Bio-inspired Information and Communication Technologies. BICT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57115-3_15

  16. Khaleel, A., Shoaib, A., Nur, I.U.: Security of NoSQL database against intruders. Recent Pat. Eng. 13(1), 5–12 (2019). https://doi.org/10.2174/1872212112666180731114714

    Article  Google Scholar 

  17. Maté, A., Peral, J., Trujillo, J., et al.: Improving security in NoSQL document databases through model-driven modernization. Knowl. Inf. Syst. 63, 2209–2230 (2021). https://doi.org/10.1007/s10115-021-01589-x

    Article  Google Scholar 

  18. Kaur, H.: Analysis of Nosql database state-of-the-art techniques and their security issues. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(2), 467–471 (2021). https://doi.org/10.17762/turcomat.v12i2.852

    Article  Google Scholar 

  19. Konoplev, A.S., Busygin, A.G., Zegzhda, D.P.: A blockchain decentralized public key infrastructure model. Autom. Control Comput. Sci. 52(8), 1017–1021 (2018)

    Article  Google Scholar 

  20. Aujla, S., Chaudhary, R., Kumar, N., Das, A.K., Rodrigues, J.J.P.C.: SecSVA: secure storage, verification, and auditing of big data in the cloud environment. IEEE Commun. Mag. 56(1), 78–85 (2018). https://doi.org/10.1109/MCOM.2018.1700379

    Article  Google Scholar 

  21. Tariq, N., et al.: The security of big data in fog-enabled IoT applications including blockchain: a survey. Sensors 19(8), 1788 (2019)

    Article  Google Scholar 

  22. Zhao, Y., Yu, Y., Li, Y., Han, G., Du, X.: Machine learning based privacy-preserving fair data trading in big data market. Inf. Sci. 478, 449–460 (2019)

    Article  Google Scholar 

  23. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (eds) Advances in Cryptology—ASIACRYPT 2005. Lecture Notes in Computer Science, vol. 3788. Springer, Berlin (2005). https://doi.org/10.1007/11593447_10

  24. Aleksandrova, E.B., Poltavtseva, M.A., Shmatov, V.S.: Ensuring the big data integrity through verifiable zero-knowledge operations In: Springer CCIS Volume for MobiSec 2021 (in Press)

  25. Yupeng, Z.: New (Zero-Knowledge) Arguments and Their Applications to Verifiable Computation. University of Maryland, College Park. ProQuest Dissertations Publishing (2018). https://doi.org/10.13016/M20P0WV10

  26. Premkamal, P.K., Pasupuleti, S.K., Singh, A.K., et al.: Enhanced attribute based access control with secure deduplication for big data storage in cloud. Peer-to-Peer Netw. Appl. 14, 102–120 (2021). https://doi.org/10.1007/s12083-020-00940-3

    Article  Google Scholar 

  27. Chukkapalli, S.S.L., Piplai, A., Mittal, S., Gupta, M., Joshi, A.: A smart-farming ontology for attribute based access control. In: 2020 IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), pp. 29–34 (2020). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS49724.2020.00017

  28. He, H., Zheng, L., Li, P., et al.: An efficient attribute-based hierarchical data access control scheme in cloud computing. Hum. Cent. Comput. Inf. Sci. 10, 1–19 (2020). https://doi.org/10.1186/s13673-020-00255-5

    Article  Google Scholar 

  29. Tan, L., Shi, N., Yang, C., Yu, K.: A blockchain-based access control framework for cyber-physical-social system big data. IEEE Access 8, 77215–77226 (2020). https://doi.org/10.1109/ACCESS.2020.2988951

    Article  Google Scholar 

  30. Sukesha, S.P., Puranik, Y.L.: Blockchain technology. Int. J. Trend Sci. Res. Dev. (IJTSRD) 3(4), 573–574 (2019). https://doi.org/10.31142/ijtsrd23774

  31. Hoxha, L.: Hashgraph the future of decentralized technology and the end of blockchain. Eur. J. Eng. Formal Sci. 2(1), 29–32 (2019). https://doi.org/10.26417/ejef.v2i2.p86-89

    Article  MathSciNet  Google Scholar 

  32. Popov, S.: The tangle. IOTA (2015). https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf. Accessed 25 July 2021

  33. Musungate, B.N., Candan, B., Çabuk, U. C.,Dalkılıç, G.: Sidechains: highlights and challenges. In: 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). 31 Oct.–2 Nov. 2019, pp. 1–5 (2019). https://doi.org/10.1109/ASYU48272.2019.8946384

  34. Dworkin, M.: SHA-3 Standard: permutation-based hash and extendable-output functions. In: Federal Information Processing Standards (NIST FIPS), National Institute of Standards and Technology, Gaithersburg, MD. Accessed 25 July 2021. https://doi.org/10.6028/NIST.FIPS.202

  35. Bertoni, G., Peeters, M., Van Assche, G.: The Keccak reference (2011)

  36. Sklavos, N., Kitsos, P., BLAKE HASH function family on FPGA: from the fastest to the smallest. In: IEEE Computer Society Annual Symposium on VLSI, vol. 2010, pp. 139–142. IEEE (2010). https://doi.org/10.1109/ISVLSI.2010.115

  37. Hedera. Official documentation. https://www.hedera.com/learning/what-is-hashgraph-consensus. Accessed 25 July 2021

  38. Baird, L.: The swirlds hashgraph consensus algorithm: fair, fast, byzantine fault tolerance. Swirlds, Inc. Technical Report SWIRLDS-TR-2016, vol. 1, pp. 1–28 (2016)

  39. Fu, X., Wang, H., Shi, P.: A survey of Blockchain consensus algorithms: mechanism, design and applications. Sci. China Inf. Sci. 64, 1–15 (2021). https://doi.org/10.1007/s11432-019-2790-1

    Article  Google Scholar 

Download references

Funding

The work was performed as part of the State assignment for basic research (topic code 0784-2020-0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Poltavtseva.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poltavtseva, M.A., Aleksandrova, E.B., Shmatov, V.S. et al. Data protection in heterogeneous big data systems. J Comput Virol Hack Tech 19, 451–458 (2023). https://doi.org/10.1007/s11416-023-00472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11416-023-00472-3

Keywords

Navigation