Skip to main content

Parametric study of hand dorsal vein biometric recognition vulnerability to spoofing attacks

  • Original Paper
  • Published:
Journal of Computer Virology and Hacking Techniques Aims and scope Submit manuscript

A Correction to this article was published on 12 August 2023

This article has been updated

Abstract

Biometric vein recognition systems are vulnerable to presentation attacks. Traditionally, researchers have used a near-infrared (NIR) drawing of the user’s vascular bed to create a presentation attack instrument (PAI). This paper investigates the feasibility of using free software to capture a venous pattern of the hand without NIR under normal lighting conditions and to create a PAI on biometric systems based on the obtained data. The authors compare the effectiveness of presentation attacks conducted using “classical” PAI – a printed image of the user’s vascular bed obtained in the NIR range, a cropped version of the “classical” PAI pasted on the attacker’s hand, and a PAI generated from data obtained from a smartphone. The study showed that it is not only possible to covertly acquire the venous pattern of the dorsal part of the hand in vivo with available equipment but also to create artifacts based on this data that can traverse the biometric system, with a successful attack possible in 65.5% of attempts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

References

  1. FacePay [Electronic Resource]. https://ru.wikipedia.org/wiki/ FacePay (visited on 04/19/2023).

  2. Unified Biometric System: new stage of development [Electronic Resource]. 2023. https://www.cbr.ru/eng/press/event/?id=9413 visited on 04/19/2023.

  3. Singhal, S.K.: Security analysis of aadhaar authentication process and way forward. In: 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). IEEE, 2021. 1304–1307. https://doi.org/10.1109/icac3n53548.2021.9725391.

  4. Liu, A., Zhao, C., Yu, Z., Wan, J., Su, A., Liu, X., Zhang, D.: Contrastive context-aware learning for 3d high-fidelity mask face presentation attack detection. IEEE Trans. Inf. Forens. Security 17, 2497–2507 (2022). https://doi.org/10.1109/tifs.2022.3188149

    Article  MATH  Google Scholar 

  5. Kulikov, A.A.: Application of biometric systems in face identification technologies. Russ. Technol. J. 9(3), 7–14 (2021). (In Russ.) https://doi.org/10.32362/2500-316X-2021-9-3-7-14

  6. Lin, J.D., Lin, H.H., Dy, J., Chen, J.C., Tanveer, M., Razzak, I., Hua, K.L.: Lightweight face anti-spoofing network for telehealth applications. IEEE J. Biomed. Health Inform. 26(5), 1987–1996 (2021). https://doi.org/10.1109/jbhi.2021.3107735

    Article  MATH  Google Scholar 

  7. Birla, L., Gupta, P.: PATRON: Exploring respiratory signal derived from non-contact face videos for face anti-spoofing. Exp. Syst. Appl. 187, 115883 (2022). https://doi.org/10.1016/j.eswa.2021.115883

    Article  Google Scholar 

  8. Wu, H., Kuo, H. C., Zheng, N., Hung, K. H., Lee, H. Y., Tsao, Y., Meng, H.: Partially fake audio detection by self-attention-based fake span discovery. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 9236–9240 (2022). https://doi.org/10.1109/icassp43922.2022.9746162.

  9. Gonzalez-Soler, L. J., Gomez-Barrero, M., Kamble, M., Todisco, M., Busch, C.:Dual-stream temporal convolutional neural network for voice presentation attack detection. In: 2022 International Workshop on Biometrics and Forensics (IWBF). IEEE, 2022. 1–6. https://doi.org/10.1109/iwbf55382.2022

  10. Zaidi, S.F.A., Xu, L.: Implementation of multiple feature selection algorithms for speech spoofing detection. J. Phys. Conf. Ser.. 2224(1), 012119 (2022). https://doi.org/10.1088/1742-6596/2224/1/012119

    Article  Google Scholar 

  11. Yan, C., Ji, X., Wang, K., Jiang, Q., Jin, Z., Xu, W.: A survey on voice assistant security: Attacks and countermeasures. ACM Comput. Surv. 55(4), 1–36 (2022). https://doi.org/10.1145/3527153

    Article  MATH  Google Scholar 

  12. George, A., Mostaani, Z., Geissenbuhler, D., Nikisins, O., Anjos, A., Marcel, S.: Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Trans. Inf. Forensics Secur. 15, 42–55 (2019). https://doi.org/10.1109/tifs.2019.2916652

    Article  Google Scholar 

  13. Chen, H., Hu, G., Lei, Z., Chen, Y., Robertson, N.M., Li, S.Z.: Attention-based two-stream convolutional networks for face spoofing detection. IEEE Trans. Inf. Forensics Secur. 15, 578–593 (2019). https://doi.org/10.1109/tifs.2019.2922241

    Article  MATH  Google Scholar 

  14. Zhang, S., Liu, A., Wan, J., Liang, Y., Guo, G., Escalera, S., Li, S.Z.: Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing. IEEE Trans. Biometrics Behav. Identity Science 2(2), 182–193 (2020). https://doi.org/10.1109/tbiom.2020.2973001

    Article  Google Scholar 

  15. Sun, W., Song, Y., Chen, C., Huang, J., Kot, A.C.: Face spoofing detection based on local ternary label supervision in fully convolutional networks. IEEE Trans. Inf. Forensics Secur. 15, 3181–3196 (2020). https://doi.org/10.1109/tifs.2020.2985530

    Article  MATH  Google Scholar 

  16. Yu, Z., Wan, J., Qin, Y., Li, X., Li, S.Z., Zhao, G.: NAS-FAS: Static-dynamic central difference network search for face anti-spoofing. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 3005–3023 (2020). https://doi.org/10.1109/tpami.2020.3036338

    Article  MATH  Google Scholar 

  17. Wang, G., Han, H., Shan, S., Chen, X.: Unsupervised adversarial domain adaptation for cross-domain face presentation attack detection. IEEE Trans. Inf. Forensics Secur. 16, 56–69 (2020). https://doi.org/10.1109/tifs.2020.3002390

    Article  MATH  Google Scholar 

  18. George, A., Marcel, S.: Learning one class representations for face presentation attack detection using multi-channel convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 16, 361–375 (2020). https://doi.org/10.1109/tifs.2020.3013214

    Article  MATH  Google Scholar 

  19. Cai, R., Li, H., Wang, S., Chen, C., Kot, A.C.: DRL-FAS: A novel framework based on deep reinforcement learning for face anti-spoofing. IEEE Trans. Inf. Forensics Secur. 16, 937–951 (2020). https://doi.org/10.1109/tifs.2020.3026553

    Article  MATH  Google Scholar 

  20. Neves, J.C., Tolosana, R., Vera-Rodriguez, R., Lopes, V., Proença, H., Fierrez, J.: Ganprintr: Improved fakes and evaluation of the state of the art in face manipulation detection. IEEE J. Sel. Top. Signal Process. 14(5), 1038–1048 (2020). https://doi.org/10.1109/jstsp.2020.3007250

    Article  Google Scholar 

  21. Yoon, S.H., Koh, M.S., Park, J.H., Yu, H.J.: A new replay attack against automatic speaker verification systems. IEEE Access 8, 36080–36088 (2020). https://doi.org/10.1109/access.2020.2974290

    Article  Google Scholar 

  22. Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., Hassabis, D.: Parallel wavenet: Fast high-fidelity speech synthesis. In: J. Dy, A. Krause (eds) Proceedings of the 35th International Conference on Machine Learning. PMLR, vol. 80, pp. 3918–3926 (2018).

  23. Jannati, M.J., Sayadiyan, A.: Part-syllable transformation-based voice conversion with very limited training data. Circ. Syst. Signal Process. 37, 1935–1957 (2018). https://doi.org/10.1007/s00034-017-0639-x

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, Z., Evans, N., Kinnunen, T., Yamagishi, J., Alegre, F., Li, H.: Spoofing and countermeasures for speaker verification: a survey. Speech Commun. 66, 130–153 (2015)

    Article  Google Scholar 

  25. Hawkes, P. L., Clayden, D.O.: Veincheck research for automatic identification of people. In: Hand and Fingerprint Seminar at NPL, pp. 230–236 (1993).

  26. Cho, S., Oh, B.S., Toh, K.A., Lin, Z.: Extraction and cross-matching of palm-vein and palmprint from the RGB and the NIR spectrums for identity verification. IEEE Access 8, 4005–4021 (2019). https://doi.org/10.1109/access.2019.2963078

    Article  MATH  Google Scholar 

  27. Tang, C., Yuan, Y., Xia, S., Ma, G., Wang, B.: Visualizing veins from color skin images using convolutional neural networks. J. Innov. Opt. Health Sci. 13(04), 2050020 (2020). https://doi.org/10.1142/s1793545820500200

    Article  Google Scholar 

  28. Cho, S., Oh, B.S., Kim, D., Toh, K.A.: Palm-vein verification using images from the visible spectrum. IEEE Access 9, 86914–86927 (2021). https://doi.org/10.1109/access.2021.3089484

    Article  MATH  Google Scholar 

  29. Jia, R., Tang, C., Wang, B.: Visualizing veins from color images under varying illuminations for medical applications. J. Biomed. Opt. 26(9), 096006–096006 (2021). https://doi.org/10.1117/1.jbo.26.9.096006

    Article  Google Scholar 

  30. Tang, C., Zhang, Y., Han, L., Chen, X.: Vein pattern recognition based on RGB images using Monte Carlo simulation and ridge tracking. J. Forensic Sci. 67(3), 1002–1020 (2022). https://doi.org/10.1111/1556-4029.15002

    Article  MATH  Google Scholar 

  31. Hashimoto, N., Murakami, Y., Bautista, P.A., Yamaguchi, M., Obi, T., Ohyama, N., Kosugi, Y.: Multispectral image enhancement for effective visualization. Opt. Exp. 19(10), 9315–9329 (2011). https://doi.org/10.1364/oe.19.009315

    Article  Google Scholar 

  32. Peng, M., Wang, C., Chen, T., Liu, G.: A methodology for palm vein image enhancement and visualization. In: 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), IEEE (2016). https://doi.org/10.1109/icoacs.2016.7563048.

  33. Chen, C., Ross, A:. An explainable attention-guided iris presentation attack detector. In: 2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 97–106 (2021). https://doi.org/10.1109/wacvw52041.2021.00015.

  34. Rani, S., Gowroju, S., Kumar, S.: IRIS based recognition and spoofing attacks: A review. In: 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART), IEEE, pp. 2–6 (2021). https://doi.org/10.1109/smart52563.

  35. Fang, M., Damer, N., Boutros, F., Kirchbuchner, F., Kuijper, A.: Iris presentation attack detection by attention-based and deep pixel-wise binary supervision network. In: 2021 IEEE International Joint Conference on Biometrics (IJCB). IEEE, pp. 1–8 (2021). https://doi.org/10.1109/ijcb52358.2021.

  36. Choudhary, M., Tiwari, V., & Venkanna, U.: Iris presentation attack detection for mobile devices. In: Information and Communication Technology for Competitive Strategies (ICTCS 2020). Springer Nature Singapore, pp. 1165–1173 (2021)

  37. Czajka, A.: Is that eye dead or alive? Detecting new iris biometrics attacks. Biometric Technol. Today. 2021(5), 9–12 (2021). https://doi.org/10.1016/s09694765(21)00060-6

    Article  MATH  Google Scholar 

  38. Fang, Z., Czajka, A., Bowyer, K.W.: Robust iris presentation attack detection fusing 2d and 3d information. IEEE Trans. Inf. Forensics Secur. 16, 510–520 (2020). https://doi.org/10.1109/tifs.2020.3015547

    Article  MATH  Google Scholar 

  39. Thukral, A., Kumar, M.: IRIS spoofing through print attack using SVM classification with gabor and HOG features. In: 2022 International Conference for Advancement in Technology (ICONAT). IEEE, pp. 1–6 (2022). https://doi.org/10.1109/iconat53423.

  40. Kolberg, J., Gläsner, D., Breithaupt, R., Gomez-Barrero, M., Reinhold, J., Von Twickel, A., Busch, C.: On the effectiveness of impedance-based fingerprint presentation attack detection. Sensors 21(17), 5686 (2021). https://doi.org/10.3390/s21175686

    Article  Google Scholar 

  41. Karampidis, K., Rousouliotis, M., Linardos, E., Kavallieratou, E.: A comprehensive survey of fingerprint presentation attack detection. J. Surveill. Secur. Saf. 2(4), 117–161 (2021)

    Google Scholar 

  42. Sharma, D., Selwal, A.: An intelligent approach for fingerprint presentation attack detection using ensemble learning with improved local image features. Multimedia Tools Appl. 81(16), 22129–22161 (2022). https://doi.org/10.1007/s11042021-11254-8

    Article  Google Scholar 

  43. Zhang, W., Liu, H., Liu, F.: Fingerprint presentation attack detection by learning in frequency domain. In: 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). IEEE, pp. 183–189 (2021). https://doi.org/10.1109/prml52754.2021.9520694.

  44. Liu, H., Zhang, W., Liu, F., Wu, H., Shen, L.: Fingerprint presentation attack detector using global-local model. IEEE Trans. Cybernet. 52(11), 12315–12328 (2021). https://doi.org/10.1109/tcyb.2021.3081764

    Article  MATH  Google Scholar 

  45. Husseis, A., Liu-Jimenez, J., Sanchez-Reillo, R.: Fingerprint presentation attack detection utilizing spatio-temporal features. Sensors 21(6), 2059 (2021). https://doi.org/10.3390/s21062059

    Article  Google Scholar 

  46. Wang, F., Leng, L., Teoh, A.B.J., Chu, J.: Palmprint false acceptance attack with a generative adversarial network (GAN). Appl. Sci. 10(23), 8547 (2020). https://doi.org/10.3390/app10238547

    Article  MATH  Google Scholar 

  47. Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R.: intelligent human systems integration. Springer International Publishing, Berlin, (2020). https://doi.org/10.1007/978-3-030-39512-4

    Article  Google Scholar 

  48. Sun, Y., Leng, L., Jin, Z., Kim, B.G.: Reinforced palmprint reconstruction attacks in biometric systems. Sensors 22(2), 591 (2022). https://doi.org/10.3390/s22020591

    Article  MATH  Google Scholar 

  49. Tome P., Vanoni M., Marcel S.: On the vulnerability of finger vein recognition to spoofing. In: 2014 International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–10 (2014)

  50. Tome P., Marcel S.: On the vulnerability of palm vein recognition to spoofing attacks. In: Proceedings of 2015 International Conference on Biometrics, ICB 2015, IEEE, pp. 319–325 (2015). https://doi.org/10.1109/icb.2015.7139056.

  51. Tome, P., Raghavendra, R., Busch, C., Tirunagari, S., Poh, N., Shekar, B.H., Marcel, S.: The 1st competition on counter measures to finger vein spoofing attacks. In: 2015 International Conference on Biometrics (ICB), IEEE, 2015, pp. 513– 518 (2015). https://doi.org/10.1109/icb.2015.7139067.

  52. Debiasi, L., Kauba, C., Hofbauer, H., Prommegger, B., Uhl, A.: Presentation attacks and detection in finger-and hand-vein recognition. In: Proceedings of the Joint Austrian Computer Vision and Robotics Workshop 2020 (The Joint Austrian Computer Vision and Robotics Workshop (OAGM and ARW Workshop)). Verlag der Technischen Universit¨at Graz, Graz, (2020), pp. 65–70. https://doi.org/10.3217/978-3-85125-7526-16. Visited on 11/24/2022

  53. Aydemir, A. K., Hämmerle-Uhl, J., Uhl, A.: Feasibility of morphing-attacks in vascular biometrics. In: 2021 IEEE International Joint Conference on Biometrics (IJCB), Shenzhen, China (2021)

  54. Schuiki, J., Prommegger, B., Uhl, A.: Confronting a variety of finger vein recognition algorithms with wax presentation attack artefacts. In: 2021 IEEE International Workshop on Biometrics and Forensics (IWBF) (2021 IEEE International Workshop on Biometrics and Forensics (IWBF)), Rome, Italy, IEEE,. 1–6 (2021). https://doi.org/10.1109/IWBF50991.2021.9465091.

  55. Wang, Y., Zhao, Z.: Liveness detection of dorsal hand vein based on the analysis of Fourier spectral. In: Lecture notes in computer science. Springer International Publishing, 322–329 (2013). https://doi.org/10.1007/978-3-319-029610_40.

  56. FIDIS. D6.1 Forensic Implications of Identity Management Systems [Electronic Resource]. (2006) http://www.fidis.net/fileadmin/fidis/deliverables/fidis-wp6-del6.1.forensic_implications_of_identity_management_systems.pdf. Visited on 06/30/2021

  57. Patil, I., Bhilare, S., Kanhangad, V.: Assessing vulnerability of dorsal hand-vein verification system to spoofing attacks using smartphone camera. In: 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), IEEE, 1–6 (2016). https://doi.org/10.1109/isba.2016.7477232.

  58. Bhilare, S., Kanhangad, V., Chaudhari, N.: Histogram of oriented gradients based presentation attack detection in dorsal hand-vein biometric system. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA) (2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)). Nagoya, Japan, IEEE, pp. 39–42 2017. ISBN 978–4–901122–16–0. https://doi.org/10.23919/MVA.

  59. Schuiki, J., Uhl, A.: Improved liveness detection in dorsal hand vein videos using photoplethysmography. German Comput. Assoc. Bonn 2020, 1–5 (2020)

    Google Scholar 

  60. Raghavendra, R., Avinash, M., Marcel, S., Busch, C.: Finger vein liveness detection using motion magnification. In: 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS). IEEE (2015). https://doi.org/10.1109/btas.2015.7358762.

  61. Patil, I., Bhilare, S., Kanhangad, V.: Assessing vulnerability of dorsal hand-vein verification system to spoofing attacks using smartphone camera. In: 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), IEEE, 1–6 (2016). https://doi.org/10.1109/isba.2016.7477232.

  62. Garcia-Martin, R., Sanchez-Reillo, R.: Wrist vascular biometric recognition using a portable contactless system. Sensors 20(5), 1469 (2020). https://doi.org/10.3390/s20051469

    Article  MATH  Google Scholar 

  63. Garcia-Martin, R., Sanchez-Reillo, R.: Vein biometric recognition on a smartphone. IEEE Access 8, 104801–104813 (2020). https://doi.org/10.1109/access.2020

    Article  MATH  Google Scholar 

  64. ArcticEngineer. IRVeinViewer. 2021. https://play.google.com/store/apps/details?id=ru.arcticengineer.irveinviewer&hl=ru&gl=US.

  65. Li, J., Hu, Y., Zhang, Y., Zhao, Z., Li, J., Zhou, W.: Finger-vein recognition based on improved Zernike moment. In: 2017 Chinese Automation Congress (CAC). — Jinan: IEEE (2017). https://doi.org/10.1109/cac.2017.8243129.

  66. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004). https://doi.org/10.1023/b:visi.0000029664.99615.94

    Article  MATH  Google Scholar 

  67. Wang, G., Wang, J.: SIFT based vein recognition models: analysis and improvement. In: Computational and Mathematical Methods in Medicine, pp. 1–14 (2017). https://doi.org/10.1155/2017/2373818.

  68. Anjos, A., Tome, P., Marcel, S.: An introduction to vein presentation attacks and detection. In: Handbook of Biometric Anti-Spoofing: Presentation Attack Detection, 419–438 (2019). https://doi.org/10.1007/978-3-319-92627-8_18.

  69. Wang, Y., Qi, Q., Li, K.: Liveness detection of dorsal hand vein based on AutoRegressive model. In: 2014 IEEE Computers, Communications and IT Applications Conference, pp. 206–210 (2014). IEEE. https://doi.org/10.1109/comcomap.2014.7017197.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Mizinov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article Reference 5 was incorrect. It has been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizinov, P.V., Konnova, N.S., Basarab, M.A. et al. Parametric study of hand dorsal vein biometric recognition vulnerability to spoofing attacks. J Comput Virol Hack Tech 20, 383–396 (2024). https://doi.org/10.1007/s11416-023-00492-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11416-023-00492-z

Keywords