Skip to main content
Log in

Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper shows that the problem of minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm T can be reduced to a 0-1 linear fractional optimization problem in polynomial time. Consequently, parametrization techniques, e.g., Dinkelbach’s algorithm, can be applied by solving a classical set covering problem in each iteration. Similar reduction can also be performed on the sup-T equation constrained optimization problems with an objective function being monotone in each variable separately. This method could be extended as well to the case in which the triangular norm is non-Archimedean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sanchez, Resolution of composite fuzzy relation equations, Information and Control, 1976, 30(1): 38–48.

    Article  MATH  MathSciNet  Google Scholar 

  2. U. Thole, H. -J. Zimmermann, and P. Zysno, On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems, 1979, 2(2): 167–180.

    Article  MATH  Google Scholar 

  3. V. Loia and S. Sessa, Fuzzy relation equations for coding/decoding processes of images and videos, Information Sciences, 2005, 171(1–3): 145–172.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. E. Bellman and L. A. Zadeh, Local and fuzzy logics, in Modern Uses of Multiple Valued Logic (ed. by J. M. Dunn and G. Epstein), Reidel, Dordrecht, 1977, 103–165.

    Google Scholar 

  5. R. R. Yager, Some procedures for selecting fuzzy set-theoretic operators, International Journal General Systems, 1982, 8(2): 115–124.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Chen and P. P. Wang, Fuzzy relation equations (I): the general and specialized solving algorithms, Soft Computing, 2002, 6(6): 428–435.

    MATH  Google Scholar 

  7. A. Markovskii, On the relation between equations with max-product composition and the covering problem, Fuzzy Sets and Systems, 2005, 153(2): 261–273.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Di Nola, S. Sessa, W. Pedrycz, and E. Sanchez, Fuzzy Relation Equations and Their Applications to Knowledge Engineering, Kluwer, Dordrecht, 1989.

    MATH  Google Scholar 

  9. B. De Baets, Analytical solution methods for fuzzy relational equations, in Fundamentals of Fuzzy Sets, the Handbooks of Fuzzy Sets Series (ed. by D. Dubois and H. Prade), Vol. 1, Kluwer, Dordrecht, 2000, 291–340.

    Google Scholar 

  10. K. Peeva and Y. Kyosev, Fuzzy Relational Calculus: Theory, Applications, and Software, World Scientific, New Jersey, 2004.

    MATH  Google Scholar 

  11. W. Pedrycz, Processing in relational structures: fuzzy relational equations, Fuzzy Sets and Systems, 1991, 40(1): 77–106.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, Upper Saddle River, NJ, 1995.

    MATH  Google Scholar 

  13. P. Li and S. C. Fang, A survey on fuzzy relational equations, Part I: classification and solvability, submitted to Fuzzy Optimization and Decision Making.

  14. S. C. Fang and G. Li, Solving fuzzy relation equations with a linear objective function, Fuzzy Sets and Systems, 1999, 103(1): 107–113.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. K. Wu, S. M. Guu, and J. Y. C. Liu, An accelerated approach for solving fuzzy relation equations with a linear objective function, IEEE Transactions on Fuzzy Systems, 2002, 10(4): 552–558.

    Article  Google Scholar 

  16. Y. K. Wu and S. M. Guu, Minimizing a linear function under a fuzzy max-min relational equation constraint, Fuzzy Sets and Systems, 2005, 150(1): 147–162.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Loetamonphong and S. C. Fang, Optimization of fuzzy relation equations with max-product composition, Fuzzy Sets and Systems, 2001, 118(3): 509–517.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. M. Guu and Y. K. Wu, Minimizing a linear objective function with fuzzy relation equation constraints, Fuzzy Optimization and Decision Making, 2002, 1(4): 347–360.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Ghodousian and E. Khorram, An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition, Applied Mathematics and Computation, 2006, 178(2): 502–509.

    MATH  MathSciNet  Google Scholar 

  20. Y. K. Wu and S. M. Guu, A note on fuzzy relation programming problems with max-strict-t-norm composition, Fuzzy Optimization and Decision Making, 2004, 3(3): 271–278.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Khorram and A. Ghodousian, Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition, Applied Mathematics and Computation, 2006, 173(2): 872–886.

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. K. Wu, Optimization of fuzzy relational equations with max-av composition, Information Sciences, 2007, 177(19): 4216–4229.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Abbasi Molai and E. Khorram, Another modification from two papers of Ghodousian and Khorram and khorram et al., Applied Mathematics and Computation, 2008, 197(2): 559–565.

    Article  MATH  MathSciNet  Google Scholar 

  24. F. F. Guo and Z. Q. Xia, An algorithm for solving optimization problems with one linear objective function and finitely many constraints of fuzzy relation inequalities, Fuzzy Optimization and Decision Making, 2006, 5(1): 33–47.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Abbasi Molai and E. Khorram, An algorithm for solving fuzzy relation equations with max-T composition operator, Information Sciences, 2008, 178(5): 1293–1308.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Li and S. C. Fang, On the resolution and optimization of a system of fuzzy relational equations with sup-T composition, Fuzzy Optimization and Decision Making, 2008, 7(2): 169–214.

    Article  MathSciNet  Google Scholar 

  27. J. Lu and S. C. Fang, Solving nonlinear optimization problems with fuzzy relation equation constraints, Fuzzy Sets and Systems, 2001, 119(1): 1–20.

    Article  MathSciNet  Google Scholar 

  28. J. H. Yang and B. Y. Cao, Posynomial fuzzy relation geometric programming, in Proceedings of the 12th International Fuzzy Systems Association World Congress (ed. by P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and W. Pedrycz), Cancun, Mexico, 2007, 563–572.

  29. J. H. Yang and B. Y. Cao, Geometric programming with fuzzy relation equation constraints, in Proceedings of the IEEE International Conference on Fuzzy Systems, Reno, NV, 2005, 557–560.

  30. P. Z. Wang, D. Z. Zhang, E. Sanchez, and E. S. Lee, Latticized linear programming and fuzzy relation inequalities, Journal of Mathematical Analysis and Applications, 1991, 159(1): 72–87.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. F. Wang, A multi-objective mathematical programming problem with fuzzy relation constraints, Journal of Multi-Criteria Decision Analysis, 1995, 4(1): 23–35.

    Article  MATH  Google Scholar 

  32. J. Loetamonphong, S. C. Fang, and R. Young, Multi-objective optimization problems with fuzzy relation equation constraints, Fuzzy Sets and Systems, 2002, 127(2): 141–164.

    Article  MATH  MathSciNet  Google Scholar 

  33. Y. K. Wu, S. M. Guu, and J. Y. C. Liu, Optimizing the linear fractional programming problem with max-Archimedean t-norm fuzzy relational equation constraints, in Proceedings of the IEEE International Conference on Fuzzy Systems, London, 2007, 1–6.

  34. E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.

    MATH  Google Scholar 

  35. W. Pedrycz, On generalized fuzzy relational equations and their applications, Journal of Mathematical Analysis and Applications, 1985, 107(2): 520–536.

    Article  MATH  MathSciNet  Google Scholar 

  36. G. B. Stamou and S. G. Tzafestas, Resolution of composite fuzzy relation equations based on Archimedean triangular norms, Fuzzy Sets and Systems, 2001, 120(3): 395–407.

    Article  MATH  MathSciNet  Google Scholar 

  37. E. Balas and M. W. Padberg, Set partitioning: a survey, SIAM Review, 1976, 18(4): 710–760.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Caprara, P. Toth, and M. Fischetti, Algorithms for the set covering problem, Annals of Operations Research, 2000, 98(1–4): 353–371.

    Article  MATH  MathSciNet  Google Scholar 

  39. P. L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and Related Areas, Springer-Verlag, Berlin, 1968.

    MATH  Google Scholar 

  40. R. Jagannathan, On some properties of programming problems in parametric form pertaining to fractional programming, Management Science, 1966, 12(7): 609–615.

    Article  MathSciNet  Google Scholar 

  41. W. Dinkelbach, On nonlinear fractional programming, Management Science, 1967, 13(7): 492–498.

    Article  MathSciNet  Google Scholar 

  42. S. Schaible, Fractional programming. II, on Dinkelbach's algorithm, Management Science, 1976, 22(8): 868–873.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. G. Ródenas, M. L. López, and D. Verastegui, Extensions of Dinkelbach’s algorithm for solving non-linear fractional programming problems, Top, 1999, 7(1): 33–70.

    Article  MATH  MathSciNet  Google Scholar 

  44. I. M. Stancu-Minasian, Fractional Programming: Theory, Methods, and Applications, Kluwer, Dordrecht, 1997.

    MATH  Google Scholar 

  45. M. Tawarmalani, S. Ahmed, and N. V. Sahinidis, Global optimization of 0-1 hyperbolic programs, Journal of Global Optimization, 2002, 24(4): 385–416.

    Article  MATH  MathSciNet  Google Scholar 

  46. E. Boros and P. L. Hammer, Pseudo-Boolean optimization, Discrete Applied Mathematics, 2002, 123(1–3): 155–225.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingke Li.

Additional information

The work is supported by the National Science Foundation of the United States under Grant No. #DMI-0553310.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Fang, SC. Minimizing a linear fractional function subject to a system of sup-T equations with a continuous Archimedean triangular norm. J Syst Sci Complex 22, 49–62 (2009). https://doi.org/10.1007/s11424-009-9146-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-009-9146-x

Key words

Navigation