Skip to main content
Log in

Least-squares Galerkin procedure for second-order hyperbolic equations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes the least-squares Galerkin finite element scheme to solve second-order hyperbolic equations. The convergence analysis shows that the method yields the approximate solutions with optimal accuracy in (L 2(Ω))2 × L 2(Ω) norms. Moreover, the method gets the approximate solutions with second-order accuracy in time increment. A numerical example testifies the efficiency of the novel scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 1976, 13(4): 564–576.

    Article  MATH  MathSciNet  Google Scholar 

  2. Y. R. Yuan and H. Wang, Error estimates for the finite element methods for nonlinear hyperbolic equations, Journal of Systems Science and Mathematical Science (in Chinese), 1985, 5(3): 161–171.

    MATH  MathSciNet  Google Scholar 

  3. Y. R. Yuan and H. Wang, The discrete-time finite element methods for nonlinear hyperbolic equations and their theoretical analysis, Journal of Computational Mathematics, 1988, 6(3): 193–204.

    MATH  MathSciNet  Google Scholar 

  4. L. C. Cowsar, T. F. Dupont, and M. F. Wheeler, A priori estimates for mixed finite element methods for the wave equations, Computer Methods in Applied Mechanics and Engineering, 1990, 82(1–3): 205–222.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. C. Cowsar, T. F. Dupont, and M. F. Wheeler, A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions, SIAM Journal on Numerical Analysis, 1996, 33(2): 492–504.

    Article  MATH  MathSciNet  Google Scholar 

  6. Y. P. Chen and Y. Q. Huang, The full-discrete mixed finite element methods for nonlinear hyperbolic equations, Communications in Nonlinear Science and Numerical Simulations, 1998, 3(3): 152–155.

    Article  MATH  Google Scholar 

  7. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, London, 1969.

    Google Scholar 

  8. I. Babuśka, The finite element method with Lagrangian multipliers, Numerische Mathematik, 1973, 20(3): 179–192.

    Article  MATH  Google Scholar 

  9. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numer., 1974, 8(R-2): 129–151.

    MathSciNet  Google Scholar 

  10. Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. MicCormick, First-order system least squares for second-order partial differential equations II, SIAM Journal on Numerical Analysis, 1997, 34(2): 425–454.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Pehlivanov, G. F. Carey, and D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM Journal on Numerical Analysis, 1994, 31(5): 1368–1377.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations, SIAM Journal on Numerical Analysis, 1998, 35(3): 990–1009.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. P. Yang, Some least-squares Galerkin procedures for first-order time-dependent convectiondiffusion system, Computer Methods in Applied Mechanics and Engineering, 1999, 180(1–2): 81–95.

    Article  MATH  MathSciNet  Google Scholar 

  14. Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations with application to linear elasticity, SIAM Journal on Numerical Analysis, 1997, 34(5): 1727–1741.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  16. P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, Springer, Berlin, 1977, (606): 292–315.

    Chapter  Google Scholar 

  17. J. C. Nedelec, Mixed finite element in R 3, Numerische Mathematik, 1980, 35(3): 315–341.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. G. Ciarlet, Finite Element Methods for Elliptic Problems, North-Holland, New York, 1978.

    Google Scholar 

  19. Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. MicCormick, First-order system least squares for second-order partial differential equations I, SIAM Journal on Numerical Analysis, 1994, 31(6): 1785–1799.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. F. Wheeler, A priori L 2 error estimates for Galerkin approximation to parabolic partial differential equations, SIAM Journal on Numerical Analysis, 1973, 10(4): 723–759.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Guo.

Additional information

This research is supported by the Mathematical Tianyuan Foundation of China under Grant No. 10726032, the National Natural Science Foundation of China under Grant No. 10471099, and the Fundamental Research Funds for the Central Universities.

This paper was recommended for publication by Editor Ningning YAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Rui, H. & Lin, C. Least-squares Galerkin procedure for second-order hyperbolic equations. J Syst Sci Complex 24, 381–393 (2011). https://doi.org/10.1007/s11424-010-8015-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-8015-y

Key words

Navigation