Skip to main content
Log in

Sieve least squares estimator for partial linear models with current status data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Current status data often arise in survival analysis and reliability studies, when a continuous response is reduced to an indicator of whether the response is greater or less than an observed random threshold value. This article considers a partial linear model with current status data. A sieve least squares estimator is proposed to estimate both the regression parameters and the nonparametric function. This paper shows, under some mild condition, that the estimators are strong consistent. Moreover, the parameter estimators are normally distributed, while the nonparametric component achieves the optimal convergence rate. Simulation studies are carried out to investigate the performance of the proposed estimates. For illustration purposes, the method is applied to a real dataset from a study of the calcification of the hydrogel intraocular lenses, a complication of cataract treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. F. Yu, K. Y. W. Kwan, D. H. Y. Chan, et al., Clinical features of 46 eyes with calcified hydrogel intraocular lenses, Journal of Cataract and Refractive Surgery, 2001, 27: 1596–1606.

    Article  Google Scholar 

  2. H. Xue, K. F. Lam, and G. Li, Sieve maximum likelihood estimator for semiparametric regression models with current status data, Journal American Statistical Association, 2004, 99: 346–356.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Huang and A. J. Rossini, Sieve estimation for the proportional odds failure-time regression model with interval censoring, Journal of American Statistical Association, 1997, 92: 960–967.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. J. Bickel, C. A. J. Klaassen, Y. Ritov, et al., Efficient and Adaptive Estimation for Semiparametric Models, Johns Hopkins University Press, Baltimore, 1993.

    MATH  Google Scholar 

  5. S. Ma and M. R. Kosorok, Robust semiparametric M-estimation and the weighted bootstrap, Journal of Multivariate Analysis, 2005, 96: 190–217.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Ma, Semiparametric regression with current status data, Far East Journal of Theoretical Statistics, 2005, 15: 53–73.

    MATH  MathSciNet  Google Scholar 

  7. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  8. H. Xue, K. F. Lam, B. J. Cowling, et al., Semi-parametric accelerated failure time regression analysis with application to interval-censored HIV/AIDS data, Statistics in Medicine, 2006, 25: 3850–3863.

    Article  MathSciNet  Google Scholar 

  9. K. F. Lam and H. Xue, A semiparametric regression cure model with current status data, Biometrika, 2005, 92: 573–586.

    Article  MATH  MathSciNet  Google Scholar 

  10. X. Shen and W. H. Wong, Convergence rate of sieve estimates, The Annals of Statistics, 1994, 22: 680–615.

    Article  MathSciNet  Google Scholar 

  11. J. Huang, Efficient estimation for the proportional hazards model with interval censoring, The Annals of Statistics, 1996, 24: 540–568.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqi Xue.

Additional information

This research is supported in part by the National Natural Science Foundation of China under Grant No. 10801133.

This paper was recommended for publication by Editor Guohua ZOU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhang, S. & Xue, H. Sieve least squares estimator for partial linear models with current status data. J Syst Sci Complex 24, 335–346 (2011). https://doi.org/10.1007/s11424-011-8050-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-011-8050-3

Key words

Navigation