Skip to main content
Log in

Lack-of-fit tests based on weighted ratio of residuals and variances

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This article proposes a new lack-of-test based on the weighted ratio of residuals and variances for partially linear regression models. The large and small sampling properties of the proposed test are established. The testing procedure is illustrated via several examples. Simulation studies show that the testing procedures are powerful even in small samples. An application of the test to a real data set is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Engle, C. W. J. Granger, J. Rice, and A. Weiss, Semi-parametric estimates of the relation between weather and electricity sales, Journal of the American Statistical Association, 1968, 81: 310–320.

    Article  Google Scholar 

  2. D. Ruppert, M. P. Wand, and R J Carroll, Semi-parametric Regression, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  3. M. A. Delgado and J. Mora, Nonparametric and semi-parametric estimation with discrete regressors, Econometrica, 1995, 63: 1477–1484.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric Models, Springer, New York, 2004.

    Book  MATH  Google Scholar 

  5. J. von Neumann, Distribution of the ratio of the mean squared successive difference to the variance, Ann. Math. Statist, 1941, 12: 367–395.

    Article  MATH  Google Scholar 

  6. P. J. Munson and R. W. Jernigan, A cubic spline extension of the Durbin-Watson test, Biometrika, 76: 39–47.

  7. R. L. Eubank and J. D. Hart, Commonality of cusum von Neumann and smoothing-based goodness-of-fit tests, Biometrika, 1993, 80: 89–98.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Durbin and G. S. Watson, Testing for serial correlation in least squares regression I, Biometrika, 1950, 37: 409–428.

    MathSciNet  MATH  Google Scholar 

  9. H. Müller and U. Stadtmüller, Estimation of heteroscedasticity in regression analysis, Annals of Statistics, 1987, 15: 610–625.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Z. Tian and X. Z. Wu, A quasi-residuals method, Advances in Mathematics, 2001, 30: 182–184.

    MathSciNet  MATH  Google Scholar 

  11. M. Z. Tian and G. Y. Li, Quasi-residuals method in sliced inverse regression, Statistics and Probability Letters, 2004, 66: 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Z. Tian and N. H. Chan, Saddle point approximation and volatility estimation of value-at-risk, Statistica Sinica, 2010, 20: 1239–1256.

    MathSciNet  MATH  Google Scholar 

  13. H. Chen, Convergence rates for parametric components in a partly linear model, The Annals of Statistics, 1988, 16: 136–146.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Tukey, Curves as parameters, and touch estimation, Proc. Fourth Berkeley Symp. Math. Statist. Probab, 1961, 1: 681–694.

    MathSciNet  Google Scholar 

  15. P. Major, On a nonparametric estimation of the regression function. Studia Sci. Math. Hungar, 1973, 8: 347–361.

    MathSciNet  Google Scholar 

  16. K. W. Chen, Asymptotically optimal selection of a piecewise polynomial estimator of a regression function, J. Multivariate Anal, 1987, 22: 230–244.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. J. Stone, Additive regression and other nonparametric models, Ann. Statist., 1985, 13: 689–705.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Gasser, L. Sroka, and C. Jennen-Steinmetz, Residual variance and residual pattern in nonlinear regression, Biometrika, 1986, 73: 625–633.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. D. Cook and S. Weisberg, Diagnostics for heteroscedasticity in regression, Biometrika, 1983, 70: 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. L. Eubank and W. Thoms, Detecting heteroscedasticity in nonparametric regression, Journal of the Royal Statistical Society, Series B, 1993, 55: 145–155.

    MATH  Google Scholar 

  21. E. J. Page, Continuous inspection schemes, Biometrika, 1954, 41: 100–115.

    MathSciNet  MATH  Google Scholar 

  22. M. J. Buckley, Detecting a smooth signal: optimality of cusum based procedures, Biometrika, 1991, 78: 253–262.

    Article  MathSciNet  Google Scholar 

  23. R. L. Eubank and J. D. Hart, Testing goodness-of-fit in regression via order selection criteria, Ann. Statist, 1992, 20: 1412–1425.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Neyman, Smooth test for goodness of fit, Skandinavisk Aktuarietidskrift, 1937, 20: 149–199.

    Google Scholar 

  25. J. D. Hart, Nonparametric Smoothing and Lack-of-fit Tests, Springer, 1997.

  26. L. Wang, M. G. Akritas, and I. Van Keilegom, ANOVA-type nonparametric diagnostic tests for heteroscedastic regression models. Journal of Nonparametric Statistics, 2008, 20: 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. D. Brinkman, Ethanol fuel — A single-cylinder engine study of efficiency and exhaust emissions, SAE Transactions, 1981, 90: 1410–1424.

    Google Scholar 

  28. J. M. Chambers and T. J. Hastie, Statistical Models in S, CRC Press, Inc. Boca Raton, FL, USA, 1991.

    Google Scholar 

  29. E. T. Browne, The characteristic equation of a matrix, Bull. Amer. Math. Soc., 1928, 34: 363–368.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. C. MacDuffee, The Theory of Matrices, Chelsea, New York, 1946.

    Google Scholar 

  31. S. N. Roy, A useful theorem in matrix theory. Proceeding American Mathematical Society, 1954, 5: 635–638.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maozai Tian.

Additional information

The research was partially supported by the Major Project of Humanities Social Science Foundation of Ministry of Education under Grant No. 08JJD910247, Key Project of Chinese Ministry of Education under Grant No. 108120, National Natural Science Foundation of China under Grant No. 11271368, Beijing Natural Science Foundation under Grant No. 1102021, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China under Grant Nos. 10XNL018 and 11XNH107.

This paper was recommended for publication by Editor Guohua ZOU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, M., Luo, Y., Su, Y. et al. Lack-of-fit tests based on weighted ratio of residuals and variances. J Syst Sci Complex 25, 1202–1214 (2012). https://doi.org/10.1007/s11424-012-0193-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-012-0193-3

Key words

Navigation