Skip to main content
Log in

Heteroscedasticity Detection and Estimation with Quantile Difference Method

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

When dealing with regression analysis, heteroscedasticity is a problem that the authors have to face with. Especially if little information can be got in advance, detection of heteroscedasticity as well as estimation of statistical models could be even more difficult. To this end, this paper proposes a quantile difference method (QDM) that can effectively estimate the heteroscedastic function. This method, being completely free from the estimation of mean regression function, is simple, robust and easy to implement. Moreover, the QDM method enables the detection of heteroscedasticity without any restrictions on error terms, consequently being widely applied. What is worth mentioning is that based on the proposed approach estimators of both mean regression function and heteroscedastic function can be obtained. In the end, the authors conduct some simulations to examine the performance of the proposed methods and use a real data to make an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bickel P J, Using residuals robustly I: Tests for heteroscedasticity, nonlinearity, The Annals of Statistics, 1978, 6(2): 266–291.

    Article  MathSciNet  MATH  Google Scholar 

  2. Harrison M J and McCabe P M, A test for heteroscedasticity based on ordinary least squares residuals, Journal of the American Statistical Association, 1979, 74(366): 494–499.

    Article  MathSciNet  MATH  Google Scholar 

  3. Breusch T S and Pagan A R, A simple test for heteroscedasticity and random coefficient variation, Econometrica, 1979, 47(5): 1287–1294.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook R D and Weisberg S, Diagnostics for heteroscedasticity in regression, Biometrika, 1983, 70(1): 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  5. Davidian M and Carroll R J, Variance function estimation, Journal of the American Statistical Association, 1987, 82(400): 1079–1091.

    Article  MathSciNet  MATH  Google Scholar 

  6. Müller H G and Stadtmüller U, Estimation of heteroscedasticity in regression analysis, The Annals of Statistics, 1987, 15(2): 610–625.

    Article  MathSciNet  MATH  Google Scholar 

  7. Eubank R L and Thomas W, Detecting heteroscedasticity in nonparametric regression, Journal of the Royal Statistical Society, Series B (Methodological), 1993, 55(1): 145–155.

    MathSciNet  MATH  Google Scholar 

  8. Dette H and Munk A, Testing heteroscedasticity in nonparametric regression, Journal of the Royal Statistical Society, Series B (Statistical Methodology), 1998, 60(4): 693–708.

    Article  MathSciNet  MATH  Google Scholar 

  9. Koenker R and Bassett G, Robust tests for heteroscedasticity based on regression quantiles, Econometrica, 1982, 50(1): 43–61.

    Article  MathSciNet  MATH  Google Scholar 

  10. Welsh A H, Carroll R J, and Ruppert D, Fitting heteroscedastic regression models, Journal of the American Statistical Association, 1994, 89(425): 100–116.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang H J, Inference on quantile regression for heteroscedastic mixed models, Statistica Sinica, 2009, 19: 1247–1261.

    MathSciNet  MATH  Google Scholar 

  12. Chan N H and Zhang R M, Quantile inference for heteroscedastic regression models, Journal of Statistical Planning and Inference, 2011, 41(1): 2079–2090.

    Article  MathSciNet  MATH  Google Scholar 

  13. Tian M Z and Chan N H, Saddle point approximation and volatility estimation of value-at-risk, Statistica Sinica, 2010, 20: 1239–1256

    MathSciNet  MATH  Google Scholar 

  14. Zou H and Yuan M, Composite quantile regression and the oracle model selection theory, Ann. Statist., 2008, 36: 1108–1126.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen Y L, Tian M Z, Yu K, and Pan J X, Composite hierarchical linear quantile regression, Acta Mathematicae Applicatae Sinica, English Serie, 2014, 30(1): 49–64.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen Y L, Tang M L, and Tian M Z, Semiparametric hierarchical composite quantile regression, Communications in Statistics C Theory and Methods, 2015, 44(5): 996–1012.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pepió M and Polo C, Quantile plots in the analysis of heteroscedastic models, QÚESTIIÓ, 1992, 16: 135–145.

    MATH  Google Scholar 

  18. Hôrdle W, Müller M, Sperlich S, and Werwatz A, Nonparametric and Semiparametric Models, Springer-Verlag, Berlin and Heidelberg, 2005.

    Google Scholar 

  19. Hart J D, Nonparametric Smoothing and Lack-of-Fit Tests, Springer, New York, 1997.

    Book  MATH  Google Scholar 

  20. Von Neumann J, Distribution of the ratio of the mean square successive difference to the variance, The Annals of Mathematical Statistics, 1941, 12(4): 367–395.

    Article  MathSciNet  MATH  Google Scholar 

  21. Von Neumann J, Kent R H, Bellinson H R, and Hart B I, The mean square successive difference, The Annals of Mathematical Statistics, 1941, 12(2): 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  22. Rao J N K, A note on mean square successive differences, Journal of the American Statistical Association, 1959, 54(288): 801–806.

    MathSciNet  MATH  Google Scholar 

  23. Williams J D, Moments of the ratio of the mean square successive difference to the mean square difference in samples from a normal universe, The Annals of Mathematical Statistics, 1941, 12(2): 239–241.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hart B I and von Neumann J, Tabulation of the probabilities for the ratio of the mean square successive difference to the variance, The Annals of Mathematical Statistics, 1942, 13(2): 207–214.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hart B I, Significance levels for the ratio of the mean square successive difference to the variance, The Annals of Mathematical Statistics, 1942, 13(4): 445–447.

    Article  MathSciNet  MATH  Google Scholar 

  26. Bingham C and Nelson L S, An approximation for the distribution of the von Neumann ratio, Technometrics, 1981, 23(3): 285–288.

    Article  MathSciNet  MATH  Google Scholar 

  27. Tian M Z and Wu X Z, A quasi-residuals method, Advances in Mathematics, 2001, 30: 182–184.

    MathSciNet  MATH  Google Scholar 

  28. Tian M Z and He C Z, Quasi-residual diagnostic theory and methodology for heteroscedastic model, Natur. Sci. J. Xiangtan Univ., 2001, 23: 1–8.

    MathSciNet  Google Scholar 

  29. Tian M Z and He C Z, A generalized variance-ratio test for a Heteroskedastic regression, Mathematics in Economics, 2003, 20: 52–61.

    MathSciNet  Google Scholar 

  30. Tian M Z and Li G Y, Quasi-residuals method in sliced inverse regression, Statistics and Probability Letters, 2004, 66: 205–211.

    Article  MathSciNet  MATH  Google Scholar 

  31. Tian M Z, Estimation theory based on quasi-residuals in sliced inverse regression, Journal of Systems Science and Mathematical Sciences, 2005, 25(5): 348–355 (in Chinese).

    Google Scholar 

  32. Bartels R, The rank version of von Neumann’s ratio test for randomness, Journal of the American Statistical Association, 1982, 77(377): 40–46.

    Article  MATH  Google Scholar 

  33. Koenker R and Zhao Q, Conditional quantile estimation and inference for arch models, Econometric Theory, 1996, 12(5): 793–813.

    Article  MathSciNet  Google Scholar 

  34. Bailar B, Salary survey of U.S. colleges and universities offering degrees in statistics, Amstat News, 1991, 182: 3C10.

    Google Scholar 

  35. Withers C S, Central limit theorems for dependent variables, I. Wahrscheinlichkeitstheorie verw. Gebiete., 1981, 57(4): 509–534.

    Article  MathSciNet  MATH  Google Scholar 

  36. Diananda P H, The central limit theorem for m-dependent variables, Mathematical Proceedings of the Cambridge Philosophical Society, 1955, 51: 92–95.

    Article  MathSciNet  MATH  Google Scholar 

  37. Serfling R J, Contributions to central limit theory for dependent variables, The Annals of Mathematical Statistics, 1968, 39(4): 1158–1175.

    Article  MathSciNet  MATH  Google Scholar 

  38. McLeish D L, Dependent central limit theorems and invariance principles, The Annals of Probability, 1974, 2(4): 620–628.

    Article  MathSciNet  MATH  Google Scholar 

  39. Hoeffiding W and Robbins H, The central limit theorem for dependent random variables, Duke Mathematical Journal, 1948, 15: 773–780.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maozai Tian.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11271368, the Major Program of Beijing Philosophy and Social Science Foundation of China under Grant No. 15ZDA17, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20130004110007, the Key Program of National Philosophy and Social Science Foundation under Grant No. 13AZD064, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China under Grant No. 15XNL008, and the Project of Flying Apsaras Scholar of Lanzhou University of Finance & Economics.

This paper was recommended for publication by Editor SUN Liuquan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, W., Xiong, W. & Tian, M. Heteroscedasticity Detection and Estimation with Quantile Difference Method. J Syst Sci Complex 29, 511–530 (2016). https://doi.org/10.1007/s11424-015-3161-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-015-3161-x

Keywords

Navigation