Skip to main content
Log in

Sliding Mode Control with Perturbation Estimation and Hysteresis Compensator Based on Bouc-Wen Model in Tackling Fast-Varying Sinusoidal Position Control of a Piezoelectric Actuator

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, a sliding mode control with perturbation estimation (SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation. The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity, thus reducing the nonlinear system to a linear system with an inversion error. Then, a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances, aiming at improving the dynamic performance and the robustness of system. An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme. The result shows that for a fast-rate control input, the proposed method is capable of leading to a good performance of system behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge P and Jouaneh M, Tracking control of a piezoceramic actuator, IEEE Trans. Control Syst. Technol, 1996, 4(3): 209–216.

    Article  Google Scholar 

  2. Bashash S and Jalili N, Robust multiple frequency trajectory tracking control of piezoelectrically driven micro/nanopositioning systems, IEEE Trans. Control Syst. Technol, 2007, 15(5): 867–878.

    Article  Google Scholar 

  3. Wei T A, Garmon F A, Khosla P K et al., Modeling rate-dependent hysteresis in piezoelectric actuators, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, 1975–1980.

    Google Scholar 

  4. Edardar M, Tan X B, and Khalil H K, Sliding-mode tracking control of piezo-actuated nanopositioners, American Control Conference, Montreal, QC, 2012, 3825–3830.

    Google Scholar 

  5. Lin C J and Lin P T, Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model, Computers and Mathematics with Applications, 2012, 64(5): 766–787.

    Article  Google Scholar 

  6. Guo W P, Liu D T, and Wang W, Neural network hysteresis modeling with an improved Preisach model for piezoelectric actuators, Engineering Computations, 2012, 29(3): 248–259.

    Article  Google Scholar 

  7. Wang D H, Zhu W, and Yang Q, Linearization of stack piezoelectric ceramic actuators based on Bouc-Wen model, Intelligent Material Systems and Structures, 2011, 22(5): 401–413.

    Article  Google Scholar 

  8. Xiao S L and Li Y M, Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse preisach model, IEEE Trans. Control Syst. Technol, 2013, 21(5): 1549–1557.

    Article  Google Scholar 

  9. Liu W and Shi W K, Experimental modeling of magneto-rheological damper and PID neural network controller design, Sixth International Conference on Natural Computation, 2010, 1674–1678.

    Google Scholar 

  10. Boukhnifer M and Ferreira A, Loop shaping bilateral controller for a two-fingered telemicromanipulation system, IEEE Trans. Control Syst. Technol, 2007, 15(5): 891–905.

    Article  Google Scholar 

  11. Xu Q S, Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper, IEEE Trans. Robotics, 2013, 29(3): 663–673.

    Article  Google Scholar 

  12. Ghafarirad H, Rezaei S M, Abdullah A, et al., Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators, Precision Engineering, 2011, 35(2): 271–281.

    Article  Google Scholar 

  13. Xiao S L and Li Y M, Dynamic compensation and H control for piezoelectric actuators based on the inverse Bouc-Wen model, Robotics and Computer-Integrated Manufacturing, 2014, 30(1): 47–54.

    Article  Google Scholar 

  14. Wang Z Y, Zhang Z, et al., Precision tracking control of piezoelectric actuator based on Bouc-Wen hysteresis compensator, Electronics Letters, 2012, 48(23): 1459–1460.

    Article  Google Scholar 

  15. Mohammad S S, Seyed M R, et al., Hysteresis-observer based robust tracking control of piezoelectric actuators, American Control Conference, Baltimore, MD, USA, 2010.

    Google Scholar 

  16. Bouc R, Forced vibration of mechanical systems with hysteresis, Proc. Conf. Nonlinear Oscillation, Prague, 1967, 32–39.

    Google Scholar 

  17. Wen Y K, Method for random vibration of hysteresis systems, J. Eng. Mech. Div., 1976, 102(2): 249–263.

    Google Scholar 

  18. Low T S and Guo W, Modeling of a three-layer piezoelectric bimorph beam with hysteresis, J. Microelectromech. Syst., 1995, 4(4): 230–237.

    Article  Google Scholar 

  19. Rakotondrabe M, Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators, IEEE Trans. Autom. Sci. Eng., 2011, 8(2): 428–431.

    Article  Google Scholar 

  20. Lin C J and Lin P T, Particle swarm optimization based feedforward controller for a XY PZT positioning stage, Mechatronics, 2012, 22(5): 614–628.

    Article  Google Scholar 

  21. Rakotondrabe M, Lutz P, et al., Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilevers, IEEE Trans. Autom. Sci. Eng., 2010, 7(3): 440–450.

    Article  Google Scholar 

  22. Elmali H and Olgac N, Theory and implementation of sliding mode control with perturbation estimation (SMCPE), Proceedings of the 1992 IEEE Intemrtiond Confemme on Robotics and Automation, Nice, France, 1992.

    Google Scholar 

  23. Elmali H and Olgac N, Sliding mode control with perturbation estimation (SMCPE): A new approach, Int. J. Control, 1992, 56: 923–941.

    Article  MathSciNet  MATH  Google Scholar 

  24. Elmali H and Olgac N, Implementation of sliding mode control with perturbation estimation (SMCPE), IEEE Trans. Control Syst. Technol., 1996, 4(1): 79–85.

    Article  MATH  Google Scholar 

  25. Xu Q S and Li Y M, Sliding mode control of a piezo-driven micropositioning system using extended kalman filter, Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong and Macau, 2010, 16–20.

    Google Scholar 

  26. Chen M, Chen W H, and Wu Q X, Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer, Science China Information Sciences, 2014, 57(1): 1–13.

    MATH  Google Scholar 

  27. Tong S C and Li Y M, Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems, Science China Information Sciences, 2014, 57(1): 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang H Q, Chen B, and Lin C, Approximation-based adaptive fuzzy control for a class of nonstrict-feedback stochastic nonlinear systems, Science China Information Sciences, 2014, 57(3): 1–16.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Gan.

Additional information

This research was supported by National Science Foundation of China under Grant No. 61304097 and Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No. 61321002 and Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT1208.

This paper was recommended for publication by Editor LIU Guoping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, M., Qiao, Z. & Li, Y. Sliding Mode Control with Perturbation Estimation and Hysteresis Compensator Based on Bouc-Wen Model in Tackling Fast-Varying Sinusoidal Position Control of a Piezoelectric Actuator. J Syst Sci Complex 29, 367–381 (2016). https://doi.org/10.1007/s11424-016-5127-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-5127-z

Keywords

Navigation