Skip to main content
Log in

Graph theory methods for decomposition w.r.t. outputs of Boolean control networks

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper focuses graph theory method for the problem of decomposition w.r.t. outputs for Boolean control networks (BCNs). First, by resorting to the semi-tensor product of matrices and the matrix expression of BCNs, the definition of decomposition w.r.t. outputs is introduced. Second, by referring to the graphical structure of BCNs, a necessary and sufficient condition for the decomposition w.r.t. outputs is obtained based on graph theory method. Third, an effective algorithm to realize the maximum decomposition w.r.t. outputs is proposed. Finally, some examples are addressed to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kauffman S A, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 1969, 22(3): 437–467.

    Article  MathSciNet  Google Scholar 

  2. Albert R and Othmer H G, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, Journal of Theoretical Biology, 2003, 223(1): 1–18.

    Article  MathSciNet  Google Scholar 

  3. Faure A, Naldi A, Chaouiya C, et al., Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, 2006, 22(14): e124–e131.

    Article  Google Scholar 

  4. Schiff J L, Cellular Automata: A Discrete View of the World, John, Wiley & Sons, New York, 2008.

    MATH  Google Scholar 

  5. Shmulevich I, Dougherty E R, and Zhang W, From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of IEEE, 2002, 90: 1778–1792.

    Article  Google Scholar 

  6. Akutsu T, Hayashida M, Ching W, et al., Control of Boolean networks: Hardness results and algorithms for tree structured networks, Journal of Theoretical Biology, 2007, 244(4): 670–679.

    Article  MathSciNet  Google Scholar 

  7. Datta A, Choudhary A, Bittner M L, et al., External control in markovian genetic regulatory networks: The imperfect information case, Bioinformatics, 2004, 20(6): 924–930.

    Article  Google Scholar 

  8. Qian X and Dougherty E R, Effect of function perturbation on the steady-state distribution of genetic regulatory networks: Optimal structural intervention, IEEE Trans. on Signal Processing, 2008, 56: 4966–4976.

    Article  MathSciNet  Google Scholar 

  9. Pal R, Datta A, Bittner M L, et al., Intervention in context-sensitive probabilistic Boolean networks, Bioinformatics, 2005, 21(7): 1211–1218.

    Article  Google Scholar 

  10. Cheng D, Qi H, and Li Z, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach, Springer, Berlin, 2011.

    Book  MATH  Google Scholar 

  11. Cheng D and Qi H, Controllability and observability of Boolean control networks, Automatica, 2009, 45(7): 1659–1667.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng D, Input-state approach to Boolean networks, IEEE Trans. on Neural Networks, 2009, 20(3): 513–521.

    Google Scholar 

  13. Cheng D and Qi H, A linear representation of dynamics of Boolean networks, IEEE Trans. on Automatic Control, 2010, 55(10): 2251–2258.

    Article  MathSciNet  Google Scholar 

  14. Cheng D and Qi H, State–space analysis of Boolean networks, IEEE Trans. on Neural Networks, 2010, 21(4): 584–594.

    Article  Google Scholar 

  15. Fornasini E and Valcher M E, Observability, reconstructibility and state observers of Boolean control networks, IEEE Trans. on Automatic Control, 2013, 58(6): 1390–1401.

    Article  MathSciNet  Google Scholar 

  16. Laschov D and Margaliot M, Controllability of Boolean control networks via the perron–frobenius theory, Automatica, 2012, 48(6): 1218–1223.

    Article  MathSciNet  MATH  Google Scholar 

  17. Laschov D, Margaliot M, and Even G, Observability of Boolean networks: A graph-theoretic approach, Automatica, 2013, 48(8): 2351–2362.

    Article  MathSciNet  Google Scholar 

  18. Li F and Sun J, Controllability of probabilistic Boolean control networks, Automatica, 2011, 47(12): 2765–2771.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li F and Sun J, Controllability of higher order Boolean control networks, Applied Mathematics and Computation, 2012, 219(1): 158–169.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng D, Qi H, Li Z, et al., Stability and stabilization of Boolean networks, International Journal of Robust and Nonlinear Control, 2011, 21(2): 134–156.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fornasini E and Valcher M E, On the periodic trajectories of Boolean control networks, Automatica, 2013, 49(5): 1506–1509.

    Article  MathSciNet  MATH  Google Scholar 

  22. Li R, Yang M, and Chu T, State feedback stabilization for probabilistic Boolean networks, Automatica, 2014, 50(4): 1272–1278.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li H, Wang Y, and Xie L, Output tracking control of Boolean control networks via state feedback: Constant reference signal case, Automatica, 2015, 59(1): 54–59.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cheng D, Disturbance decoupling of Boolean control networks, IEEE Trans. on Automatic Control, 2011, 56(1): 2–10.

    Article  MathSciNet  Google Scholar 

  25. Laschov D and Margaliot M, A maximum principle for single-input Boolean control networks, IEEE Trans. on Automatic Control, 2011, 56(4): 913–917.

    Article  MathSciNet  Google Scholar 

  26. Laschov D and Margaliot M, Minimum-time control of Boolean networks, SIAM J. Control Optim., 2013, 51(4): 2869–2892.

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao Y, Li Z, and Cheng D, Optimal control of logical control networks, IEEE Trans. on Automatic Control, 2011, 56(8): 1766–1776.

    Article  MathSciNet  Google Scholar 

  28. Cheng D, Li Z, and Qi H, Realization of Boolean control networks, Automatica, 2010, 46(1): 62–69.

    Article  MathSciNet  MATH  Google Scholar 

  29. Cheng D and Zhao Y, Identification of Boolean control networks, Automatica, 2011, 47(4): 702–710.

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng D, He F, Qi H, et al., Modeling, analysis and control of networked evolutionary games, IEEE Trans. on Automatic Control, 2015, 60(9): 2402–2415.

    Article  MathSciNet  Google Scholar 

  31. Zhao Y, Kim J, and Filippone M, Aggregation algorithm towards large-scale Boolean network analysis, IEEE Trans. on Automatic Control, 2013, 56(8): 1976–1985.

    Article  MathSciNet  Google Scholar 

  32. Zou Y and Zhu J, System decomposition with respect to inputs for Boolean control networks, Automatica, 2014, 50(4): 1304–1309.

    Article  MathSciNet  MATH  Google Scholar 

  33. Zou Y and Zhu J, Decomposition with respect to outputs for Boolean control networks, 2014, arXiv: 1407.2104.

    MATH  Google Scholar 

  34. Zou Y and Zhu J, Kalman decomposition for Boolean control networks. Automatica, 2015, 54: 65–71.

    Article  MathSciNet  MATH  Google Scholar 

  35. Magnus J R and Neudecker H, Matrix Differential Calculus with Applications in Statistics and Econometrics, John, Wiley & Sons, New York, 2014.

    MATH  Google Scholar 

  36. Borůvka O, Foundations of the Theory of Groupoids and Groups, VEB Deutscher Verlag der Wissenschaften, Berlin, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Zhu.

Additional information

This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 61673012, 11271194, and a Project on the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

This paper was recommended for publication by Editor HONG Yiguang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Zhu, J. Graph theory methods for decomposition w.r.t. outputs of Boolean control networks. J Syst Sci Complex 30, 519–534 (2017). https://doi.org/10.1007/s11424-016-5131-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-016-5131-3

Keywords

Navigation