Skip to main content
Log in

Robust Chattering-Free Finite Time Attitude Tracking Control with Input Saturation

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

his paper addresses the attitude tracking control problem of a rigid spacecraft in the presence of the modeling uncertainty, external disturbance, and saturated control input by designing two robust attitude tracking controllers. The basic controller is formulated using an integral sliding mode surface which is continuous and provides an asymptotic convergence rate for the closed-loop system. In this case, only the external disturbance with the prior information is considered. Then, to provide a finite time convergence rate and further improve the robustness of the control system under the unknown system uncertainty containing both the modeling uncertainty and external disturbance, a novel integral terminal sliding mode surface (ITSMS) is designed and associated with the continuous adaptive control method. Besides, a command filter is utilized to deal with the immeasurability problem within the proposed ITSMS and an auxiliary system to counteract the input saturation problem. Digital simulations are presented to verify the effectiveness of the proposed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang B, Liu K, and Xiang J, A stabilized optimal nonlinear feedback control for satellite attitude tracking, Aerospace Science and Technology, 2013, 27(1): 17–24.

    Article  Google Scholar 

  2. Forbes J R, Passivity-based attitude control on the special orthogonal group of rigid-body rotations, Journal of Guidance Control and Dynamics, 2013, 36(6): 1596–1605.

    Article  Google Scholar 

  3. Xiao B, Yin S, and Wu L, A structure simple controller for satellite attitude tracking maneuver, IEEE Transactions on Industrial Electronics, 2016, 64(2): 1436–1446.

    Article  Google Scholar 

  4. Kristiansen R, Nicklasson P J, and Gravdahl J T, Satellite attitude control by quaternion-based backstepping, IEEE Transactions on Control Systems Technology, 2009, 17(1): 227–232.

    Article  Google Scholar 

  5. Thakur D, Srikant S, and Akella M R, Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters, Journal of Guidance Control and Dynamics, 2015, 38(1): 41–52.

    Article  Google Scholar 

  6. Sun L and Zheng Z, Adaptive relative pose control for autonomous spacecraft rendezvous and proximity operations with thrust misalignment and model uncertainties, Advances in Space Research, 2017, 59(7): 1861–1871.

    Article  Google Scholar 

  7. Zou A M, Ruiter A H J D, and Kumar K D, Distributed finite-time velocity-free attitude coordination control for spacecraft formations, Automatica, 2016, 67: 46–53.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tang Y, Terminal sliding mode control for rigid robots, Automatica, 1998, 34(1): 51–56.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin E and Sun Z, Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control, Aerospace Science and Technology, 2008, 12(4): 324–330.

    Article  MATH  Google Scholar 

  10. Mu C, Sun C, and Xu W, Fast sliding mode control on air-breathing hypersonic vehicles with transient response analysis, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2016, 230(1): 23–34.

    Google Scholar 

  11. Wu S, Radice G, Gao Y, et al., Quaternion-based finite time control for spacecraft attitude tracking, Acta Astronautica, 2009, 69(1–2): 48–58.

    Google Scholar 

  12. Sun Z, Zheng J, Wang H, et al., Adaptive fast non-singular terminal sliding mode control for a vehicle steer-by-wire system, IET Control Theory and Applications, 2017, 11(8): 1245–1254.

    Article  MathSciNet  Google Scholar 

  13. Wang L, Chai T, and Zhai L, Neural-network-based terminal sliding mode control of robotic manipulators including actuator dynamics, IEEE Transactions on Industrial Electronics, 2009, 56(9): 3296–3304.

    Article  Google Scholar 

  14. Lee D and Vukovich G, Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid, Aerospace Science and Technology, 2015, 46: 471–483.

    Article  Google Scholar 

  15. Song Z, Li H, and Sun K, Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique, ISA Transactions, 2014, 53(1): 117–124.

    Article  Google Scholar 

  16. Yu S, Yu X, Shirinzadeh B, et al., Continuous finite time control for robotic manipulators with terminal sliding mode, Automatica, 2005, 41(11): 1957–1964.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pukdeboon C and Siricharuanun P, Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking, International Journal of Control, Automation and Systems, 2014, 12(3): 530–540.

    Article  Google Scholar 

  18. Zhou N, Xia Y, Wang M, et al., Finite-time attitude control of multiple rigid spacecraft using terminal sliding mode, International Journal of Robust and Nonlinear Control, 2015, 25(12): 1862–1876.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu K and Xia Y, Adaptive attitude tracking control for rigid spacecraft with finite-time convergence, Automatica, 2013, 49(12): 3591–3599.

    Article  MathSciNet  MATH  Google Scholar 

  20. Xia Y, Zhu Z, Fu M, et al., Attitude tracking of rigid spacecraft with bounded disturbances, IEEE Transactions on Industrial Electronics, 2011, 58(2): 647–659.

    Article  Google Scholar 

  21. Zhou J and Yang J, Smooth sliding mode control for missile interception with finite-time convergence, Journal of Guidance Control and Dynamics, 2015, 38: 1–8.

    Article  Google Scholar 

  22. Li P, Ma J, and Zheng Z, Robust adaptive sliding mode control for uncertain nonlinear MIMO system with guaranteed steady state tracking error bounds, Journal of the Franklin Institute, 2016, 353(2): 303–321.

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun L, Wang W, Yi R, et al., A novel guidance law using fast terminal sliding mode control with impact angle constraints, ISA Transactions, 2016, 64: 12–23.

    Article  Google Scholar 

  24. Guo J, Xue W, and Hu T, Active disturbance rejection control for PMLM servo system in CNC machining, Journal of Systems Science and Complexity, 2016, 29(1): 74–98.

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu Y J, Tong S, Chen C L, et al., Neural controller design based adaptive control for nonlinear MIMO systems with unknown hysteresis inputs, IEEE Transactions on Cybernetics, 2016, 46(1): 9–19.

    Article  Google Scholar 

  26. Chen, C L P, Liu Y J, and Wen G X, Fuzzy neural network based adaptive control for a class of uncertain nonlinear stochastic systems, IEEE Transactions on Cybernetics, 2014, 44(5): 583–593.

    Article  Google Scholar 

  27. Li H, Wang L, Du H, et al., Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay, IEEE Transactions on Fuzzy Systems, 2017, 25(3): 642–652.

    Article  Google Scholar 

  28. Edwards C and Shtessel Y B, Adaptive continuous higher order sliding mode control, Automatica, 2016, 65(C): 183–190.

    Article  MathSciNet  MATH  Google Scholar 

  29. Shtessel Y B and Tournes C H, Integrated higher-order sliding mode guidance and autopilot for dual control missiles, Journal of Guidance Control and Dynamics, 2009, 32(1): 79–94.

    Article  Google Scholar 

  30. Derafa L, Benallegue A, and Fridman L, Super-twisting control algorithm for the attitude tracking of a four rotors UAV, Journal of the Franklin Institute, 2012, 349(2): 685–699.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nagesh I and Edwards C, A multivariable super-twisting sliding mode approach, Automatica, 2014, 50(3): 984–988.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu K and Xia Y, Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm, IET Control Theory and Applications, 2014, 8(15): 1465–1477.

    Article  Google Scholar 

  33. Chalanga A, Kamal S, Fridman L M, et al., Implementation of super-twisting control: Supertwisting and higher order sliding-mode observer-based approaches, IEEE Transactions on Industrial Electronics, 2016, 63(6): 3677–3685.

    Article  Google Scholar 

  34. Feng Y, Han F, and Yu X, Chattering free full-order sliding-mode control, Automatica, 2014, 50(4): 1310–1314.

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen Q, Tao L, and Nan Y, Full-order sliding mode control for high-order nonlinear system based on extended state observer, Journal of Systems Science and Complexity, 2016, 29(4): 978–990.

    Article  MathSciNet  MATH  Google Scholar 

  36. Mobayen S, Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties, Complexity, 2015, 21(2): 239–244.

    Article  MathSciNet  Google Scholar 

  37. Lam Q M, Drake D T, and Ridgely D B, Input saturation treatments: A performance comparison of direct adaptive control and θ - D control methodologies, IEEE Aerospace Conference, 2007, 1–15.

    Google Scholar 

  38. De Ruiter A H J, Adaptive spacecraft attitude control with actuator saturation, Journal of Guidance Control and Dynamics, 2012, 33(5): 1692–1696.

    Article  Google Scholar 

  39. Van Soest W R, Chu Q P, and Mulder J A, Combined feedback linearization and constrained model predictive control for entry flight, Journal of Guidance Control and Dynamic, 2006, 29(2): 427–434.

    Article  Google Scholar 

  40. Gayaka S, Lu L, and Yao B, Global stabilization of a chain of integrators with input saturation and disturbances: A new approach, Automatica, 2012, 48(7): 1389–1396.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wallsgrove, R J and Akella M R, Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances, Journal of Guidance Control and Dynamics, 2005, 28(5): 957–963.

    Article  Google Scholar 

  42. Akella M R, Valdivia A, and Kotamraju G R, Velocity-free attitude controllers subject to actuator magnitude and rate saturations, Journal of Guidance Control and Dynamics, 2005, 28(4): 659–666.

    Google Scholar 

  43. Bustan D, Pariz N, and Sani S K, Robust fault tolerant tracking control design for spacecraft under control input saturation, ISA Transactions, 2014, 53(4): 1073–1080.

    Article  Google Scholar 

  44. Zou A M, Kumar K D, and De Ruiter, A H J, Robust attitude tracking control of spacecraft under control input magnitude and rate saturations, International Journal of Robust and Nonlinear Control, 2016, 26(4): 799–815.

    Article  MathSciNet  MATH  Google Scholar 

  45. Dong W, Farrell J A, Polycarpou M M, et al., Command filtered adaptive backstepping, IEEE Transactions on Control Systems Technology, 2012, 20(3): 566–580.

    Article  MATH  Google Scholar 

  46. Xia K W and Huo W, Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation, ISA Transactions, 2016, 62: 249–257.

    Article  MATH  Google Scholar 

  47. Du J, Hu X, and Krstic M, Robust dynamic positioning of ships with disturbances under input saturation, Automatica, 2016, 73: 207–214.

    Article  MathSciNet  MATH  Google Scholar 

  48. Shuster M D, A survey of attitude representations, The Journal of the Astronautical Sciences, 1993, 41(4): 439–517.

    MathSciNet  Google Scholar 

  49. Gazi V and Ordonez R, Target tracking using artificial potentials and sliding mode control, International Journal of Control, 2007, 129(10): 4670–4675.

    MathSciNet  MATH  Google Scholar 

  50. Chiu C S, Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems, Automatica, 2012, 48(2): 316–326.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Chen.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 61174037.

This paper was recommended for publication by Editor LIN Zongli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Song, S. Robust Chattering-Free Finite Time Attitude Tracking Control with Input Saturation. J Syst Sci Complex 32, 1597–1629 (2019). https://doi.org/10.1007/s11424-019-7378-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-7378-y

Keywords

Navigation