Skip to main content
Log in

Characteristic Decomposition: From Regular Sets to Normal Sets

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper it is shown how to transform a regular triangular set into a normal triangular set by computing the W-characteristic set of their saturated ideal and an algorithm is proposed for decomposing any polynomial set into finitely many strong characteristic pairs, each of which is formed with the reduced lexicographic Gr¨obner basis and the normal W-characteristic set of a characterizable ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritt J, Differential Algebra, American Mathematical Society, New York, 1950.

    Book  MATH  Google Scholar 

  2. Wu W-T, On zeros of algebraic equations: An application of Ritt principle, Kexue Tongbao, 1986, 31(1): 1–5.

    MathSciNet  MATH  Google Scholar 

  3. Wu W-T, Mechanical Theorem Proving in Geometries: Basic Principles, Springer-Verlag, Wien, 1994 [Translated from the Chinese by X. Jin and D. Wang].

    Book  Google Scholar 

  4. Wu W-T, Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving, and Polynomial Equations-Solving, Kluwer Academic Publishers Norwell, MA, USA, 2001.

    MATH  Google Scholar 

  5. Aubry P, Lazard D, and Moreno Maza M, On the theories of triangular sets, J. Symbolic Comput., 1999, 28(1–2): 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bächler T, Gerdt V, Lange-Hegermann M, et al., Algorithmic Thomas decomposition of algebraic and differential systems, J. Symbolic Comput., 2012, 47(10): 1233–1266.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen C and Moreno Maza M, Algorithms for computing triangular decompositions of polynomial systems, J. Symbolic Comput., 2012, 47(6): 610–642.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chou S C and Gao X S, Ritt-Wu’s decomposition algorithm and geometry theorem proving, Proceedings of CADE-10, Ed. by Stickel M, Springer-Verlag, Berlin Heidelberg, 1990, 207–220.

    Google Scholar 

  9. Hubert E, Notes on triangular sets and triangulation-decomposition algorithms I: Polynomial systems, Symbolic and Numerical Scientific Computation, Eds. by Winkler F and Langer U, Springer-Verlag, Berlin Heidelberg, 2003, 143–158.

    Google Scholar 

  10. Kalkbrener M, A generalized Euclidean algorithm for computing triangular representations of algebraic varieties, J. Symbolic Comput., 1993, 15(2): 143–167.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lazard D, A new method for solving algebraic systems of positive dimension, Discrete Appl. Math., 1991, 33(1–3): 147–160.

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang D, An elimination method for polynomial systems, J. Symbolic Comput., 1993, 16(2): 83–114.

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang D, Decomposing polynomial systems into simple systems, J. Symbolic Comput., 1998, 25(3): 295–314.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang D, Computing triangular systems and regular systems, J. Symbolic Comput., 2000, 30(2): 221–236.

    Article  MathSciNet  MATH  Google Scholar 

  15. Buchberger B, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal, PhD thesis, Universität Innsbruck, Austria, 1965.

    MATH  Google Scholar 

  16. Faugère J C, A new efficient algorithm for computing Gröbner bases (F 4), J. Pure Appl. Algebra, 1999, 139(1–3): 61–88.

    Article  MathSciNet  MATH  Google Scholar 

  17. Faugère J C, A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5), Proceedings of ISSAC 2002, Ed. by Mora T, ACM Press, 2002, 75–83.

    Google Scholar 

  18. Faugère J C, Gianni P, Lazard D, et al., Efficient computation of zero-dimensional Gröbner bases by change of ordering, J. Symbolic Comput., 1993, 16(4): 329–344.

    Article  MathSciNet  MATH  Google Scholar 

  19. Gianni P, Trager B, and Zacharias G, Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 1988, 6(2): 149–167.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kapur D, Sun Y, and Wang D, A new algorithm for computing comprehensive Gröbner systems, Proceedings of ISSAC 2010, Ed. by Watt S, ACM Press, 2010, 29–36.

    Google Scholar 

  21. Gao S, Volny F, and Wang M, A new framework for computing Gröbner bases, Math. Comp., 2016, 85(297): 449–465.

    Article  MathSciNet  MATH  Google Scholar 

  22. Shimoyama T and Yokoyama K, Localization and primary decomposition of polynomial ideals, J. Symbolic Comput., 1996, 22(3): 247–277.

    Article  MathSciNet  MATH  Google Scholar 

  23. Weispfenning V, Comprehensive Gröbner bases, J. Symbolic Comput., 1992, 14(1): 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  24. Buchberger B, Gröbner bases: An algorithmic method in polynomial ideal theory, Multidimensional Systems Theory, Ed. by Bose N, Springer, Netherlands, 1985, 184–232.

    Chapter  Google Scholar 

  25. Dahan X, On lexicographic Gröbner bases of radical ideals in dimension zero: Interpolation and structure, arXiv: 1207.3887, 2012.

    Google Scholar 

  26. Lazard D, Solving zero-dimensional algebraic systems, J. Symbolic Comput., 1992, 13(2): 117–131.

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang D, On the connection between Ritt characteristic sets and Buchberger-Gröbner bases, Math. Comput. Sci., 2016, 10: 479–492.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao X S and Chou S C, Solving parametric algebraic systems, Proceedings of ISSAC 1992, Ed. by Wang P, ACM Press, 1992, 335–341.

    Google Scholar 

  29. Li B and Wang D, An algorithm for transforming regular chain into normal chain, Computer Mathematics, Ed. by Kapur D, Springer-Verlag, Berlin Heidelberg, 2008, 236–245.

    Chapter  Google Scholar 

  30. Wang D and Zhang Y, An algorithm for decomposing a polynomial system into normal ascending sets, Sci. China, Ser. A, 2007, 50(10): 1441–1450.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dong R and Mou C, Decomposing polynomial sets simultaneously into Gröbner bases and normal triangular sets, Proceedings of CASC 2017, Eds. by Gerdt V, Koepf W, Seiler W, et al., Springer-Verlag, Berlin Heidelberg, 2017, 77–92.

    Google Scholar 

  32. Wang D, Dong R, and Mou C, Decomposition of polynomial sets into characteristic pairs, arXiv: 1702.08664, 2017.

    Google Scholar 

  33. Mou C, Wang D, and Li X, Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case, Theoret. Comput. Sci., 2013, 468: 102–113.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang D, Elimination Methods, Springer-Verlag, Wien, 2001.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank an anonymous referee who pointed out some unclarity in an early version of the proof of Theorem 4.4 and provided the authors with helpful suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqi Mou.

Additional information

The authors dedicate this article to the memory of Wen-Tsün Wu (1919—2017), with deep gratitude for his influence and advice. The described work was supported partially by the National Natural Science Foundation of China under Grant Nos. 11771034 and 11401018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, C., Wang, D. Characteristic Decomposition: From Regular Sets to Normal Sets. J Syst Sci Complex 32, 37–46 (2019). https://doi.org/10.1007/s11424-019-8356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-019-8356-0

Keywords

Navigation