Skip to main content
Log in

A Gröbner Basis Algorithm for Ideals over Zero-Dimensional Valuation Rings

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Zero-dimensional valuation rings are one kind of non-Noetherian rings. This paper investigates properties of zero-dimensional valuation rings and prove that a finitely generated ideal over such a ring has a Gröbner basis. The authors present an algorithm for computing a Gröbner basis of a finitely generated ideal over it. Furthermore, an interesting example is also provided to explain the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchberger B, An algorithm for finding a basis for the redidue class ring of a zero dimensiomal polynomial, PhD thesis, Universität Innsbruck, Institut für Mathematik, 1965.

  2. Adams W and Loustaunau P, An Introduction to Gröbner Bases, Grad. Stud. Math., vol. 3, Amer. Math. Soc., Providence, 1994.

    Google Scholar 

  3. Becker T and Weispfenning V, Gröbner Bases — A Computational Approach to Commutative Algebra, GTM 141, Springer, New York, 1993.

    MATH  Google Scholar 

  4. Buchberger B and Winkler F, Gröbner Bases and Application, London Mathematical Society Lecture Note Series, Vol. 251. Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  5. Li D, Liu J, and Zheng L, On the equivalence of multivariate polynomial matrices, Multidim Syst. Sign Process., 2017, 28: 225–135.

    Article  MathSciNet  Google Scholar 

  6. Liu J, Li D, and Wang M, On general factorization for n-D polynomial matrices, Circuits Signal Process, 2011, 30: 553–566.

    Article  MathSciNet  Google Scholar 

  7. Li D, Liu J, and Zheng L, The Lin-Bose problem, IEEE Trans. Circuits Syst. II, 2014, 61: 41–43.

    Article  Google Scholar 

  8. Wang M and Feng D, On Lin-Bose problem, Linear Algebra and Its Application, 2004, 390: 279–285.

    Article  MathSciNet  Google Scholar 

  9. Faugere J C, A new effcient algorithm for computing Gröbner bases (F4), Journal of Pure and Applied Algebra, 1999, 139: 61–88.

    Article  MathSciNet  Google Scholar 

  10. Byrne E and Fitzpatrick P, Gröbner bases over Galois rings with an application to decoding alternant codes, J. Symbolic Comput., 2001, 31: 565–584.

    Article  MathSciNet  Google Scholar 

  11. Norton G H and Salagean A, Strong Gröbner bases and cyclic codes over a finite-chain ring, Appl. Algebra Engrg. Comm. Comput., 2000, 10: 489–506.

    Article  MathSciNet  Google Scholar 

  12. Norton G H and Salagean A, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc., 2001, 64: 505–528.

    Article  MathSciNet  Google Scholar 

  13. Sun Y and Wang D, The F5 algorithm in Buchberger’s style, Journal of Systems Science and Complexity, 2010, 24(6): 1218–1231.

    Article  MathSciNet  Google Scholar 

  14. Yengui I, Dynamical Gröbner bases, Journal of Algebra, 2006, 301: 447–458.

    Article  MathSciNet  Google Scholar 

  15. Lombardi H, Schuster P, and Yengui I, The Gröbner ring conjecture in one varible, Mathematische Zeitschrift, 2012, 270: 1181–1185.

    Article  MathSciNet  Google Scholar 

  16. Yengui I, The Gröbner ring conjecture in the lexicographic order case, Mathematische Zeitschrift, 2014, 276: 261–265.

    Article  MathSciNet  Google Scholar 

  17. Moncear S and Yengui I, On the leading terms ideal of polynomial ideal over a valuation ring, Journal of Algebra, 2012, 351: 382–389.

    Article  MathSciNet  Google Scholar 

  18. Li D, Liu J, and Zheng L, A zero-dimensional valuation ring is 1-Gröbner, Journal of Algebra, 2017, 484: 3334–343.

    Article  Google Scholar 

  19. Yengui I, Constructive Commutative Algebra, Lecture Notes in Math., vol. 2138, 2015, https://doi.org/10.1007/978-3-319-19494-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Li.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11871207 and 11971161.

This paper was recommended for publication by Editor FENG Ruyong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liu, J. A Gröbner Basis Algorithm for Ideals over Zero-Dimensional Valuation Rings. J Syst Sci Complex 34, 2470–2483 (2021). https://doi.org/10.1007/s11424-020-0010-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-0010-3

Keywords