Skip to main content

Advertisement

Log in

Adaptive Optimization with Periodic Dither Signals

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Optimization methods in cyber-physical systems do not involve parameter uncertainties in most existing literature. This paper considers adaptive optimization problems in which searching for optimal solutions and identifying unknown parameters must be performed simultaneously. Due to the dual roles of the input signals on achieving optimization and providing persistent excitation for identification, a fundamental conflict arises. In this paper, a method of adding a small deterministic periodic dither signal to the input is deployed to resolve this conflict and provide sufficient excitation for estimating the unknown parameters. The designing principle of the dither is discussed. Under dithered inputs, the authors show that simultaneous convergence of parameter estimation and optimization can be achieved. Convergence properties and convergence rates of parameter estimation and optimization variable updates are presented under the scenarios of uncertainty-free observations and systems with noisy observation and unmodeled components. The fundamental relationships and trade-off among updating step sizes, dither magnitudes, parameter estimation errors, optimization accuracy, and convergence rates are further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruszczyński A P, Nonlinear Optimization, Princeton University Press, New Jersey, 2006.

    Book  Google Scholar 

  2. Bertsekas D P, Convex Optimization Algorithms, Athena Scientific, Belmont, MA, USA, 2015.

    MATH  Google Scholar 

  3. Nesterov Y, Lectures on Convex Optimization, Springer, New York, 2018.

    Book  Google Scholar 

  4. Bottou L, Curtis F E, and Nocedal J, Optimization methods for large-scale machine learning, SIAM Review, 2018, 60(2): 223–311.

    Article  MathSciNet  Google Scholar 

  5. Nedić A and Ozdaglar A, Distributed subgradient methods for multiagent optimization, IEEE Trans. Automatic Control, 2009, 54(1): 48–61.

    Article  MathSciNet  Google Scholar 

  6. Johansson B, Rabi M, and Johansson M, A randomized incremental subgradient method for distributed optimization in networked systems, SIAM Journal on Optimization, 2010, 20(3): 1157–1170.

    Article  MathSciNet  Google Scholar 

  7. Zhang Y, Deng Z, and Hong Y, Distributed optimal coordination for multiple heterogeneous Euler-Lagrangian systems, Automatica, 2017, 79: 207–213.

    Article  MathSciNet  Google Scholar 

  8. Liang S and Yin G, Distributed smooth convex optimization with coupled constraints, IEEE Trans. Automatic Control, 2019, 65(1): 347–353.

    Article  MathSciNet  Google Scholar 

  9. Yang T, Yi X, Wu J, et al., A survey of distributed optimization, Annual Reviews in Control, 2019, 47: 278–305.

    Article  MathSciNet  Google Scholar 

  10. Mo L, Liu X, Cao X, et al., Distributed second-order continuous-time optimization via adaptive algorithm with nonuniform gradient gains, Journal of Systems Science and Complexity, 2020, 33(6): 1914–1932.

    Article  MathSciNet  Google Scholar 

  11. Yi P and Li L, Distributed nonsmooth convex optimization over Markovian switching random networks with two step-sizes, Journal of Systems Science and Complexity, 2021, https://doi.org/10.1007/s11424-020-0071-3.

  12. Bertsimas D, Brown D B, and Caramanis C, Theory and applications of robust optimization, SIAM Review, 2011, 53(3): 464–501.

    Article  MathSciNet  Google Scholar 

  13. Ben-Tal A, Den Hertog D, De Waegenaere A, et al., Robust solutions of optimization problems affected by uncertain probabilities, Management Science, 2013, 59(2): 341–357.

    Article  Google Scholar 

  14. Kosmatopoulos E B, Adaptive control design based on adaptive optimization principles, IEEE Trans. Automatic Control, 2008, 53(11): 2680–2685.

    Article  MathSciNet  Google Scholar 

  15. Duchi J, Hazan E, and Singer Y, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, 2011, 12(7): 2121–2159.

    MathSciNet  MATH  Google Scholar 

  16. Xie S Y, Liang S, Wang L Y, et al., Stochastic adaptive optimization with dithers, IEEE Trans. Automatic Control, 2021, DOI: https://doi.org/10.1109/TAC.2021.3050438.

  17. Ljung L, System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, 1987.

    MATH  Google Scholar 

  18. Wang L Y, Yin G, Zhang J F, et al., System Identification with Quantized Observations, Boston, MA, Birkhäuser, 2010 (ISBN: 978-0-8176-4955-5).

    Book  Google Scholar 

  19. Chen H F and Guo L, Identification and Stochastic Adaptive Control, Birkhäuser, Boston, 1991.

    Book  Google Scholar 

  20. Haykin S, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs, NJ, USA, 1996.

    MATH  Google Scholar 

  21. Macchi O, Adaptive Processing: The Least Mean Squares Approach with Applications in Transmission, Wiley, New York, NY, USA, 1995.

    MATH  Google Scholar 

  22. Guo L, Stability of recursive stochastic tracking algorithms, SIAM Journal on Control and Optimization, 1994, 32(5): 1195–1225.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyu Xie or Le Yi Wang.

Additional information

This research was supported in part by the Air Force Office of Scientific Research under Grant No. FA9550-18-1-0268.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Wang, L.Y. Adaptive Optimization with Periodic Dither Signals. J Syst Sci Complex 34, 1766–1781 (2021). https://doi.org/10.1007/s11424-021-1211-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-021-1211-0

Keywords

Navigation