Skip to main content

Advertisement

Log in

Multi-Agent Control: A Graph-Theoretic Perspective

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Progress in development of multi-agent control is reviewed. Different approaches for multi-agent control, estimation, and optimization are discussed in a systematic way with particular emphasis on the graph-theoretic perspective. Attention is paid to the design of multi-agent systems via Laplacian dynamics, as well as the role of the graph Laplacian spectrum, the challenges of unbalanced digraphs, and consensus-based estimation of graph statistics. Some emergent issues, e.g., distributed optimization, distributed average tracking, and distributed network games, are also reported, which have witnessed extensive development recently. There are over 200 references listed, mostly to recent contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeGroot M H, Reaching a consensus, Journal of the American Statistical Association, 1974, 69(345): 118–121.

    Article  MATH  Google Scholar 

  2. Reynolds C W, Flocks, herds and schools: A distributed behavioral model, Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, 1987, 25–34.

  3. Vicsek T, Czirók A, Ben-Jacob E, et al., Novel type of phase transition in a system of self-driven particles, Physical Review Letters, 1995, 75(6): 1226–1229.

    Article  MathSciNet  Google Scholar 

  4. Jadbabaie A, Lin J, and Morse A S, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Transactions on Automatic Control, 2003, 48(6): 988–1001.

    Article  MathSciNet  MATH  Google Scholar 

  5. Tsitsiklis J, Bertsekas D, and Athans M, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Transactions on Automatic Control, 1986, 31(9): 803–812.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu Z and Guo L, Synchronization of multi-agent systems without connectivity assumptions, Automatica, 2009, 45(12): 2744–2753.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen G, Liu Z, and Guo L, The smallest possible interaction radius for flock synchronization, SIAM Journal on Control and Optimization, 2012, 50(4): 1950–1970.

    Article  MathSciNet  MATH  Google Scholar 

  8. Olfati-Saber R and Murray R M, Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 2004, 49(9): 1520–1533.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ren W and Beard R W, Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Transactions on Automatic Control, 2005, 50(5): 655–661.

    Article  MathSciNet  MATH  Google Scholar 

  10. Moreau L, Stability of multiagent systems with time-dependent communication links, IEEE Transactions on Automatic Control, 2005, 50(2): 169–182.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin Z, Broucke M, and Francis B, Local control strategies for groups of mobile autonomous agents, IEEE Transactions on Automatic Control, 2004, 49(4): 622–629.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao M, Morse A S, and Anderson B D, Reaching a consensus in a dynamically changing environment: A graphical approach, SIAM Journal on Control and Optimization, 2008, 47(2): 575–600.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao M, Morse A S, and Anderson B D O, Reaching a consensus in a dynamically changing environment: Convergence rates, measurement delays, and asynchronous events, SIAM Journal on Control and Optimization, 2008, 47(2): 601–623.

    Article  MathSciNet  MATH  Google Scholar 

  14. El Chamie M, Liu J, and Başar T, Design and analysis of distributed averaging with quantized communication, IEEE Transactions on Automatic Control, 2016, 61(12): 3870–3884.

    Article  MathSciNet  MATH  Google Scholar 

  15. Biggs N, Biggs N L, and Norman B, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993, 67.

    MATH  Google Scholar 

  16. Zelazo D, Rahmani A, and Mesbahi M, Agreement via the edge Laplacian, 2007 46th IEEE Conference on Decision and Control, IEEE, 2007, 2309–2314.

  17. Zelazo D and Mesbahi M, Edge agreement: Graph-theoretic performance bounds and passivity analysis, IEEE Transactions on Automatic Control, 2010, 56(3): 544–555.

    Article  MathSciNet  MATH  Google Scholar 

  18. de Badyn M H, Foight D R, Calderone D, et al., Graph-theoretic optimization for edge consensus, arXiv preprint arXiv:2006.16201, 2020.

  19. Lim Y H and Ahn H S, Consensus under saturation constraints in interconnection states, IEEE Transactions on Automatic Control, 2015, 60(11): 3053–3058.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zelazo D, Rahmani A, Sandhu J, et al., Decentralized formation control via the edge Laplacian, 2008 American Control Conference, IEEE, 2008, 783–788.

  21. Li J, Ho D W, and Li J, Adaptive consensus of multi-agent systems under quantized measurements via the edge Laplacian, Automatica, 2018, 92: 217–224.

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen D H, Reduced-order distributed consensus controller design via edge dynamics, IEEE Transactions on Automatic Control, 2016, 62(1): 475–480.

    Article  MathSciNet  MATH  Google Scholar 

  23. Nedic A, Ozdaglar A, and Parrilo P A, Constrained consensus and optimization in multi-agent networks, IEEE Transactions on Automatic Control, 2010, 55(4): 922–938.

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi G, Johansson K H, and Hong Y, Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets, IEEE Transactions on Automatic Control, 2012, 58(3): 610–622.

    Article  MathSciNet  MATH  Google Scholar 

  25. Cortés J, Finite-time convergent gradient flows with applications to network consensus, Automatica, 2006, 42(11): 1993–2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang L and Xiao X, Finite-time consensus problems for networks of dynamic agents, IEEE Transactions on Automatic Control, 2010, 55(4): 950–955.

    Article  MathSciNet  MATH  Google Scholar 

  27. Georgopoulos L, Definitive Consensus for Distributed Data Inference EPFL, 2011. [Online]. Available: https://books.google.com.hk/books?id=YwQXtwAACAAJ.

  28. Hendrickx J M, Jungers R M, Olshevsky A, et al., Graph diameter, eigenvalues, and minimum-time consensus, Automatica, 2014, 50(2): 635–640.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hong Y, Hu J, and Gao L, Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 2006, 42(7): 1177–1182.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma C Q and Zhang J F, Necessary and sufficient conditions for consensusability of linear multiagent systems, IEEE Transactions on Automatic Control, 2010, 55(5): 1263–1268.

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim H, Shim H, and Seo J H, Output consensus of heterogeneous uncertain linear multi-agent systems, IEEE Transactions on Automatic Control, 2010, 56(1): 200–206.

    Article  MathSciNet  MATH  Google Scholar 

  32. Seo J H, Shim H, and Back J, Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach, Automatica, 2009, 45(11): 2659–2664.

    Article  MathSciNet  MATH  Google Scholar 

  33. Cortés J, Distributed algorithms for reaching consensus on general functions, Automatica, 2008, 44(3): 726–737.

    Article  MathSciNet  MATH  Google Scholar 

  34. Qin J and Yu C, Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition, Automatica, 2013, 49(9): 2898–2905.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang Y and Tian Y P, Consensus of data-sampled multi-agent systems with random communication delay and packet loss, IEEE Transactions on Automatic Control, 2010, 55(4): 939–943.

    Article  MathSciNet  MATH  Google Scholar 

  36. Parlangeli G and Valcher M E, On the detection and identification of edge disconnections in a multi-agent consensus network, arXiv preprint arXiv: 2101.06728, 2021.

  37. Li Z, Wen G, Duan Z, et al., Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs, IEEE Transactions on Automatic Control, 2014, 60(4): 1152–1157.

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen F and Chen J, Minimum-energy distributed consensus control of multiagent systems: A network approximation approach, IEEE Transactions on Automatic Control, 2019, 65(3): 1144–1159.

    Article  MathSciNet  MATH  Google Scholar 

  39. Xie G, Chen J, and Li Y, Hybrid-order network consensus for distributed multi-agent systems, Journal of Artificial Intelligence Research, 2021, 70: 389–407.

    Article  MathSciNet  MATH  Google Scholar 

  40. Monti A, Possieri C, and Sassano M, Modal consensus of single integrators with minimal disagreement interaction via distributed endogenous internal model, IEEE Control Systems Letters, 2020, 5(2): 689–694.

    Article  MathSciNet  Google Scholar 

  41. Tsang K F E, Huang M, Johansson K H, et al., Sparse linear injection attack on multi-agent consensus control systems, IEEE Control Systems Letters, 2020, 5(2): 665–670.

    Article  MathSciNet  Google Scholar 

  42. Chen F, Chen Z, Xiang L, et al., Reaching a consensus via pinning control, Automatica, 2009, 45(5): 1215–1220.

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguyen D H, A sub-optimal consensus design for multi-agent systems based on hierarchical lqr, Automatica, 2015, 55: 88–94.

    Article  MathSciNet  MATH  Google Scholar 

  44. Mei J, Ren W, and Chen J, Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph, IEEE Transactions on Automatic Control, 2015, 61(8): 2019–2034.

    Article  MathSciNet  MATH  Google Scholar 

  45. Molinari F, Agrawal N, Stanczak S, et al., Max-consensus over fading wireless channels, IEEE Transactions on Control of Network Systems, 2021, DOI: https://doi.org/10.1109/TCNS.2021.3050330.

  46. Li T and Zhang J F, Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises, IEEE Transactions on Automatic Control, 2010, 55(9): 2043–2057.

    Article  MathSciNet  MATH  Google Scholar 

  47. Pasqualetti F, Bicchi A, and Bullo F, Consensus computation in unreliable networks: A system theoretic approach, IEEE Transactions on Automatic Control, 2011, 57(1): 90–104.

    Article  MathSciNet  MATH  Google Scholar 

  48. Chen W, Li X, Ren W, et al., Adaptive consensus of multi-agent systems with unknown identical control directions based on a novel nussbaum-type function, IEEE Transactions on Automatic Control, 2013, 59(7): 1887–1892.

    Article  MathSciNet  MATH  Google Scholar 

  49. Lin Z, Francis B, and Maggiore M, Necessary and sufficient graphical conditions for formation control of unicycles, IEEE Transactions on Automatic Control, 2005, 50(1): 121–127.

    Article  MathSciNet  MATH  Google Scholar 

  50. Olfati-Saber R, Distributed kalman filter with embedded consensus filters, Proceedings of the 44th IEEE Conference on Decision and Control, IEEE, 2005, 8179–8184.

  51. Sarlette A, Sepulchre R, and Leonard N E, Autonomous rigid body attitude synchronization, Automatica, 2009, 45(2): 572–577.

    Article  MathSciNet  MATH  Google Scholar 

  52. Abdessameud A and Tayebi A, Attitude synchronization of a group of spacecraft without velocity measurements, IEEE Transactions on Automatic Control, 2009, 54(11): 2642–2648.

    Article  MathSciNet  MATH  Google Scholar 

  53. Jia P, MirTabatabaei A, Friedkin N E, et al., Opinion dynamics and the evolution of social power in influence networks, SIAM Review, 2015, 57(3): 367–397.

    Article  MathSciNet  MATH  Google Scholar 

  54. Xie S and Guo L, A necessary and sufficient condition for stability of lms-based consensus adaptive filters, Automatica, 2018, 93: 12–19.

    Article  MathSciNet  MATH  Google Scholar 

  55. Xie S and Lei G, Analysis of normalized least mean squares-based consensus adaptive filters under a general information condition, SIAM Journal on Control and Optimization, 2018, 56(5): 3404–3431.

    Article  MathSciNet  MATH  Google Scholar 

  56. Smith T R, Hanßmann H, and Leonard N E, Orientation control of multiple underwater vehicles with symmetry-breaking potentials, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), IEEE, 2001, 5: 4598–4603.

    Article  Google Scholar 

  57. Blondel V D, Hendrickx J M, and Tsitsiklis J N, “On krause’s multi-agent consensus model with state-dependent connectivity, IEEE transactions on Automatic Control, 2009, 54(11): 2586–2597.

    Article  MathSciNet  MATH  Google Scholar 

  58. Ferrari-Trecate G, Galbusera L, Marciandi M P E, et al., Model predictive control schemes for consensus in multi-agent systems with single-and double-integrator dynamics, IEEE Transactions on Automatic Control, 2009, 54(11): 2560–2572.

    Article  MathSciNet  MATH  Google Scholar 

  59. Lu W and Chen T, New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D: Nonlinear Phenomena, 2006, 213(2): 214–230.

    Article  MathSciNet  MATH  Google Scholar 

  60. You K and Xie L, Network topology and communication data rate for consensusability of discrete-time multi-agent systems, IEEE Transactions on Automatic Control, 2011, 56(10): 2262–2275.

    Article  MathSciNet  MATH  Google Scholar 

  61. Kempton L, Herrmann G, and di Bernardo M, Distributed optimisation and control of graph Laplacian eigenvalues for robust consensus via an adaptive multilayer strategy, International Journal of Robust and Nonlinear Control, 2017, 27(9): 1499–1525.

    MathSciNet  MATH  Google Scholar 

  62. Yang P, Freeman R A, Gordon G J, et al., Decentralized estimation and control of graph connectivity for mobile sensor networks, Automatica, 2010, 46(2): 390–396.

    Article  MathSciNet  MATH  Google Scholar 

  63. Fruhnert M and Corless M, General linear second-order consensus control with guaranteed rate of convergence, 2015 American Control Conference (ACC), IEEE, 2015, 4118–4123.

  64. Jonsson U T and Kao C Y, Consensus of heterogeneous lti agents, IEEE Transactions on Automatic Control, 2012, 57(8): 2133–2139.

    Article  MathSciNet  MATH  Google Scholar 

  65. Li K, Li S E, Gao F, et al., Robust distributed consensus control of uncertain multiagents interacted by eigenvalue-bounded topologies, IEEE Internet of Things Journal, 2020, 7(5): 3790–3798.

    Article  Google Scholar 

  66. Kibangou A Y, Graph Laplacian based matrix design for finite-time distributed average consensus, 2012 American Control Conference (ACC), IEEE, 2012, 1901–1906.

  67. Kruzick S and Moura J F, Optimal filter design for consensus on random directed graphs, 2018 IEEE Statistical Signal Processing Workshop (SSP), IEEE, 2018, 16–20.

  68. Bogojeska A, Mirchev M, Mishkovski I, et al., Synchronization and consensus in state-dependent networks, IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 61(2): 522–529.

    Article  Google Scholar 

  69. Yu W, Chen G, Ren W, et al., Distributed higher order consensus protocols in multiagent dynamical systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(8): 1924–1932.

    Article  MathSciNet  MATH  Google Scholar 

  70. Yu W, Zheng W X, Chen G, et al., Second-order consensus in multi-agent dynamical systems with sampled position data, Automatica, 2011, 47(7): 1496–1503.

    Article  MathSciNet  MATH  Google Scholar 

  71. Mousavi H K, Somarakis C, and Motee N, Koopman performance analysis of a class of nonlinear dynamical networks, 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, 2016, 117–122.

  72. Agaev R and Chebotarev P, On the spectra of nonsymmetric Laplacian matrices, Linear Algebra and Its Applications, 2005, 399: 157–168.

    Article  MathSciNet  MATH  Google Scholar 

  73. Clark A, Hou Q, Bushnell L, et al., Maximizing the smallest eigenvalue of a symmetric matrix: A submodular optimization approach, Automatica, 2018, 95: 446–454.

    Article  MathSciNet  MATH  Google Scholar 

  74. Rahmani A, Ji M, Mesbahi M, et al., Controllability of multi-agent systems from a graph-theoretic perspective, SIAM Journal on Control and Optimization, 2009, 48(1): 162–186.

    Article  MathSciNet  MATH  Google Scholar 

  75. Pirani M and Sundaram S, On the smallest eigenvalue of grounded Laplacian matrices, IEEE Transactions on Automatic Control, 2015, 61(2): 509–514.

    MathSciNet  MATH  Google Scholar 

  76. Muniraju G, Tepedelenlioglu C, and Spanias A, Consensus based distributed spectral radius estimation, IEEE Signal Processing Letters, 2020, 27: 1045–1049.

    Article  Google Scholar 

  77. Tran T M D and Kibangou A Y, Distributed estimation of Laplacian eigenvalues via constrained consensus optimization problems, Systems & Control Letters, 2015, 80: 56–62.

    Article  MathSciNet  MATH  Google Scholar 

  78. Tran T M D and Kibangou A Y, Consensus-based distributed estimation of Laplacian eigenvalues of undirected graphs, 2013 European Control Conference (ECC), IEEE, 2013, 227–232.

  79. Domínguez-García A D and Hadjicostis C N, Distributed strategies for average consensus in directed graphs, 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, 2011, 2124–2129.

  80. Dominguez-Garcia A D and Hadjicostis C N, Distributed matrix scaling and application to average consensus in directed graphs, IEEE Transactions on Automatic Control, 2012, 58(3): 667–681.

    Article  MathSciNet  MATH  Google Scholar 

  81. Kempe D, Dobra A, and Gehrke J, Gossip-based computation of aggregate information, 44th Annual IEEE Symposium on Foundations of Computer Science, Proceedings, IEEE, 2003, 482–491.

  82. Béenéezit F, Blondel V, Thiran P, et al., Weighted gossip: Distributed averaging using non-doubly stochastic matrices, 2010 IEEE International Symposium on Information Theory, IEEE, 2010, 1753–1757.

  83. Liu J and Morse A S, Asynchronous distributed averaging using double linear iterations, 2012 American Control Conference, IEEE, 2012, 6620–6625.

  84. Hadjicostis C N and Charalambous T, Average consensus in the presence of delays in directed graph topologies, IEEE Transactions on Automatic Control, 2013, 59(3): 763–768.

    Article  MathSciNet  MATH  Google Scholar 

  85. Cai K and Ishii H, Average consensus on general strongly connected digraphs, Automatica, 2012, 48(11): 2750–2761.

    Article  MathSciNet  MATH  Google Scholar 

  86. Priolo A, Gasparri A, Montijano E, et al., A distributed algorithm for average consensus on strongly connected weighted digraphs, Automatica, 2014, 50(3): 946–951.

    Article  MathSciNet  MATH  Google Scholar 

  87. Qu Z, Li C, and Lewis F, Cooperative control with distributed gain adaptation and connectivity estimation for directed networks, International Journal of Robust and Nonlinear Control, 2014, 24(3): 450–476.

    Article  MathSciNet  MATH  Google Scholar 

  88. Spanos D P, Olfati-Saber R, and Murray R M, Dynamic consensus on mobile networks, CiteSeer, 2005, 1–6.

  89. Freeman R A, Yang P, and Lynch K M, Stability and convergence properties of dynamic average consensus estimators, Proceedings of the 45th IEEE Conference on Decision and Control, IEEE, 2006, 338–343.

  90. Chen F, Cao Y, and Ren W, Distributed average tracking of multiple time-varying reference signals with bounded derivatives, IEEE Transactions on Automatic Control, 2012, 57(12): 3169–3174.

    Article  MathSciNet  MATH  Google Scholar 

  91. Wang J and Elia N, Dynamic average consensus over random networks with additive noise, 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 4789–4794.

  92. Chen F, Feng G, Ren W, et al., Distributed average tracking of networked Euler-Lagrange systems, IEEE Transactions on Automatic Control, 2015, 60(2): 547–552.

    Article  MathSciNet  MATH  Google Scholar 

  93. Chen F, Ren W, Lan W Y, et al., Distributed average tracking for reference signals with bounded accelerations, IEEE Transactions on Automatic Control, 2014, 60(3): 863–869.

    Article  MathSciNet  MATH  Google Scholar 

  94. Franceschelli M and Gasparri A, Multi-stage discrete time and randomized dynamic average consensus, Automatica, 2019, 99: 69–81.

    Article  MathSciNet  MATH  Google Scholar 

  95. Zhao Y, Xian C, Wen G, et al., Design of distributed event-triggered average tracking algorithms for homogeneous and heterogeneous multi-agent systems, IEEE Transactions on Automatic Control, 2021, DOI: https://doi.org/10.1109/TAC.2021.3060714.

  96. Zhao Y, Liu Y, Wen G, et al., Distributed average tracking for lipschitz-type of nonlinear dynamical systems, IEEE Transactions on Cybernetics, 2018, 49(12): 4140–4152.

    Article  Google Scholar 

  97. Ghapani S, Ren W, Chen F, et al., Distributed average tracking for double-integrator multi-agent systems with reduced requirement on velocity measurements, Automatica, 2017, 81: 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  98. Nosrati S, Shafiee M, and Menhaj M B, Dynamic average consensus via nonlinear protocols, Automatica, 2012, 48(9): 2262–2270.

    Article  MathSciNet  MATH  Google Scholar 

  99. Sun S, Chen F, and Ren W, Distributed average tracking in weight-unbalanced directed networks, IEEE Transactions on Automatic Control, 2020, DOI: https://doi.org/10.1109/TAC.2020.3046029.

  100. Moradian H and Kia S S, On robustness analysis of a dynamic average consensus algorithm to communication delay, IEEE Transactions on Control of Network Systems, 2018, 6(2): 633–641.

    Article  MathSciNet  MATH  Google Scholar 

  101. Chen F, Chen C, Guo G, et al., Delay and packet-drop tolerant multistage distributed average tracking in mean square, IEEE Transactions on Cybernetics, 2021, DOI: https://doi.org/10.1109/TCYB.2021.3062035.

  102. Hong H, Wen G, Yu X, et al., Robust distributed average tracking for disturbed second-order multiagent systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, DOI: https://doi.org/10.1109/TSMC.2021.3064152.

  103. Zhu M and Martínez S, Discrete-time dynamic average consensus, Automatica, 2010, 46(2): 322–329.

    Article  MathSciNet  MATH  Google Scholar 

  104. Bai H, Freeman R A, and Lynch K M, Robust dynamic average consensus of time-varying inputs, 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 3104–3109.

  105. George J and Freeman R A, Robust dynamic average consensus algorithms, IEEE Transactions on Automatic Control, 2019, 64(11): 4615–4622.

    Article  MathSciNet  MATH  Google Scholar 

  106. Montijano E, Montijano J I, Sagüés C, et al., Robust discrete time dynamic average consensus, Automatica, 2014, 50(12): 3131–3138.

    Article  MathSciNet  MATH  Google Scholar 

  107. Kia S S, Cortées J, and Martinez S, Dynamic average consensus under limited control authority and privacy requirements, International Journal of Robust and Nonlinear Control, 2015, 25(13): 1941–1966.

    Article  MathSciNet  MATH  Google Scholar 

  108. Xu K, Gao L, Chen F, et al., Robust finite-time dynamic average consensus with exponential convergence rates, IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, DOI: https://doi.org/10.1109/TCSII.2021.3054039.

  109. Wen G, Yu X, Fu J, et al., Fast distributed average tracking in multi-agent networks: The case with general linear agent dynamics, IEEE Transactions on Control of Network Systems, 2020, DOI: https://doi.org/10.1109/TCNS.2020.3046949.

  110. Van Scoy B, Freeman R A, and Lynch K M, Optimal worst-case dynamic average consensus, 2015 American Control Conference (ACC), IEEE, 2015, 5324–5329.

  111. Chen F and Ren W, A connection between dynamic region-following formation control and distributed average tracking, IEEE Transactions on Cybernetics, 2017, 48(6): 1760–1772.

    Article  Google Scholar 

  112. Chung Y F and Kia S S, Dynamic active average consensus, IEEE Control Systems Letters, 2020, 5(4): 1177–1182.

    Article  MathSciNet  Google Scholar 

  113. Rahili S and Ren W, Distributed continuous-time convex optimization with time-varying cost functions, IEEE Transactions on Automatic Control, 2016, 62(4): 1590–1605.

    Article  MathSciNet  MATH  Google Scholar 

  114. Sun Q, Yuan J, Zhang X, et al., Plane-edge-slam: Seamless fusion of planes and edges for slam in indoor environments, IEEE Transactions on Automation Science and Engineering, 2020, DOI: https://doi.org/10.1109/TASE.2020.3032831.

  115. Wang W, Chen F, Xiang L, et al., A distributed algorithm for tracking general functions of multiple signals not-necessarily having steady states, IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, DOI: https://doi.org/10.1109/TCSII.2020.3047823.

  116. Nedic A and Ozdaglar A, Distributed subgradient methods for multi-agent optimization, IEEE Transactions on Automatic Control, 2009, 54(1): 48–61.

    Article  MathSciNet  MATH  Google Scholar 

  117. Wei E and Ozdaglar A, Distributed alternating direction method of multipliers, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE, 2012, 5445–5450.

  118. Lee S and Nedić A, Asynchronous gossip-based random projection algorithms over networks, IEEE Transactions on Automatic Control, 2015, 61(4): 953–968.

    Article  MathSciNet  MATH  Google Scholar 

  119. Liu Y, Wu J, Manchester I R, et al., Gossip algorithms that preserve privacy for distributed computation part I: The algorithms and convergence conditions, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 4499–4504.

  120. Lee S and Nedić A, Gossip-based random projection algorithm for distributed optimization: Error bound, 52nd IEEE Conference on Decision and Control, IEEE, 2013, 6874–6879.

  121. Aghajan A and Touri B, Distributed optimization over dependent random networks, arXiv preprint arXiv: 2010.01956, 2020.

  122. Yi P and Hong Y, Quantized subgradient algorithm and data-rate analysis for distributed optimization, IEEE Transactions on Control of Network Systems, 2014, 1(4): 380–392.

    Article  MathSciNet  MATH  Google Scholar 

  123. Pu Y, Zeilinger M N, and Jones C N, Quantization design for distributed optimization, IEEE Transactions on Automatic Control, 2016, 62(5): 2107–2120.

    Article  MathSciNet  MATH  Google Scholar 

  124. Rabbat M G and Nowak R D, Quantized incremental algorithms for distributed optimization, IEEE Journal on Selected Areas in Communications, 2005, 23(4): 798–808.

    Article  Google Scholar 

  125. Li T, Fu K, and Fu X, Distributed stochastic subgradient optimization algorithms over random and noisy networks, arXiv preprint arXiv: 2008.08796, 2020.

  126. Srivastava K, Nedić A, and Stipanović D M, Distributed constrained optimization over noisy networks, 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 1945–1950.

  127. Li Z, Ding Z, Sun J, et al., Distributed adaptive convex optimization on directed graphs via continuous-time algorithms, IEEE Transactions on Automatic Control, 2017, 63(5): 1434–1441.

    Article  MathSciNet  MATH  Google Scholar 

  128. Wang X, Li X, and Lu J, Control and flocking of networked systems via pinning, IEEE Circuits and Systems Magazine, 2010, 10(3): 83–91.

    Article  Google Scholar 

  129. Lin P, Ren W, and Farrell J A, Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set, IEEE Transactions on Automatic Control, 2016, 62(5): 2239–2253.

    Article  MathSciNet  MATH  Google Scholar 

  130. Gharesifard B and Cortées J, Distributed continuous-time convex optimization on weight-balanced digraphs, IEEE Transactions on Automatic Control, 2013, 59(3): 781–786.

    Article  MathSciNet  Google Scholar 

  131. Lin P, Ren W, Yang C, et al., Distributed continuous-time and discrete-time optimization with nonuniform unbounded convex constraint sets and nonuniform stepsizes, IEEE Transactions on Automatic Control, 2019, 64(12): 5148–5155.

    Article  MathSciNet  MATH  Google Scholar 

  132. Chen F and Ren W, Sign projected gradient flow: A continuous-time approach to convex optimization with linear equality constraints, Automatica, 2020, 120: 109156.

    Article  MathSciNet  MATH  Google Scholar 

  133. Bürger M, Notarstefano G, and Allgöwer F, A polyhedral approximation framework for convex and robust distributed optimization, IEEE Transactions on Automatic Control, 2013, 59(2): 384–395.

    Article  MathSciNet  MATH  Google Scholar 

  134. Du W, Yi X, George J, et al., Distributed optimization with dynamic event-triggered mechanisms, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 969–974.

  135. Lu Y and Zhu M, Privacy preserving distributed optimization using homomorphic encryption, Automatica, 2018, 96: 314–325.

    Article  MathSciNet  MATH  Google Scholar 

  136. Chen F, Chen X, Xiang L, et al., Distributed economic dispatch via a predictive scheme: heterogeneous delays and privacy preservation, Automatica, 2021, 123: 109356.

    Article  MathSciNet  MATH  Google Scholar 

  137. Li Q, Heusdens R, and Christensen M G, Privacy-preserving distributed optimization via subspace perturbation: A general framework, IEEE Transactions on Signal Processing, 2020, 68: 5983–5996.

    Article  MathSciNet  Google Scholar 

  138. Gade S and Vaidya N H, Privacy-preserving distributed learning via obfuscated stochastic gradients, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 184–191.

  139. Pu S, Shi W, Xu J, et al., Push-pull gradient methods for distributed optimization in networks, IEEE Transactions on Automatic Control, 2018, arXiv: 1810.06653.

  140. Nedic A, Distributed gradient methods for convex machine learning problems in networks: Distributed optimization, IEEE Signal Processing Magazine, 2020, 37(3): 92–101.

    Article  Google Scholar 

  141. Zhu Y, Yu W, Wen G, et al., Continuous-time coordination algorithm for distributed convex optimization over weight-unbalanced directed networks, IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 66(7): 1202–1206.

    Google Scholar 

  142. Wada T, Masubuchi I, Hanada K, et al., Distributed multi-objective optimization over randomly varying unbalanced networks, IFAC-PapersOnLine, 2017, 50(1): 2403–2408.

    Article  Google Scholar 

  143. Xie P, You K, Tempo R, et al., Distributed convex optimization with inequality constraints over time-varying unbalanced digraphs, IEEE Transactions on Automatic Control, 2018, 63(12): 4331–4337.

    Article  MathSciNet  MATH  Google Scholar 

  144. Romano A R and Pavel L, Dynamic ne seeking for multi-integrator networked agents with disturbance rejection, IEEE Transactions on Control of Network Systems, 2019, 7(1): 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  145. Pavel L, Distributed gne seeking under partial-decision information over networks via a doubly-augmented operator splitting approach, IEEE Transactions on Automatic Control, 2019, 65(4): 1584–1597.

    Article  MathSciNet  MATH  Google Scholar 

  146. Zou Y, Huang B, Meng Z, et al., Continuous-time distributed Nash equilibrium seeking algorithms for non-cooperative constrained games, Automatica, 2021, 127: 109535.

    Article  MathSciNet  MATH  Google Scholar 

  147. Lu K, Jing G, and Wang L, Distributed algorithms for searching generalized Nash equilibrium of noncooperative games, IEEE Transactions on Cybernetics, 2018, 49(6): 2362–2371.

    Article  Google Scholar 

  148. Salehisadaghiani F and Pavel L, Distributed Nash equilibrium seeking: A gossip-based algorithm, Automatica, 2016, 72: 209–216.

    Article  MathSciNet  MATH  Google Scholar 

  149. Ye M and Hu G, Distributed Nash equilibrium seeking by a consensus based approach, IEEE Transactions on Automatic Control, 2017, 62(9): 4811–4818.

    Article  MathSciNet  MATH  Google Scholar 

  150. De Persis C and Grammatico S, Distributed averaging integral Nash equilibrium seeking on networks, Automatica, 2019, 110: 108548.

    Article  MathSciNet  MATH  Google Scholar 

  151. Tatarenko T, Shi W, and Nedić A, Accelerated gradient play algorithm for distributed Nash equilibrium seeking, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 3561–3566.

  152. Salehisadaghiani F, Shi W, and Pavel L, Distributed Nash equilibrium seeking under partial-decision information via the alternating direction method of multipliers, Automatica, 2019, 103: 27–35.

    Article  MathSciNet  MATH  Google Scholar 

  153. Gadjov D and Pavel L, A passivity-based approach to Nash equilibrium seeking over networks, IEEE Transactions on Automatic Control, 2018, 64(3): 1077–1092.

    Article  MathSciNet  MATH  Google Scholar 

  154. Tatarenko T, Shi W, and Nedich A, Geometric convergence of gradient play algorithms for distributed Nash equilibrium seeking, IEEE Transactions on Automatic Control, 2018, arXiv: 1809.07383.

  155. Mu Y and Guo L, A new class of control systems based on non-equilibrium games, Three Decades of Progress in Control Sciences, Springer, 2010, 313–326.

  156. Mu Y F and Guo L, How cooperation arises from rational players? 49th IEEE Conference on Decision and Control (CDC), IEEE, 2010, 6149–6154.

  157. Zhang R and Guo L, Controllability of stochastic game-based control systems, SIAM Journal on Control and Optimization, 2019, 57(6): 3799–3826.

    Article  MathSciNet  MATH  Google Scholar 

  158. Zhu M and Martinez S, Distributed coverage games for energy-aware mobile sensor networks, SIAM Journal on Control and Optimization, 2013, 51(1): 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  159. Rahili S, Lu J, Ren W, et al., Distributed coverage control of mobile sensor networks in unknown environment using game theory: Algorithms and experiments, IEEE Transactions on Mobile Computing, 2017, 17(6): 1303–1313.

    Article  Google Scholar 

  160. Mondal A, Misra S, and Obaidat M S, Distributed home energy management system with storage in smart grid using game theory, IEEE Systems Journal, 2015, 11(3): 1857–1866.

    Article  Google Scholar 

  161. Saad W, Han Z, and Poor H V, Coalitional game theory for cooperative micro-grid distribution networks, 2011 IEEE International Conference on Communications Workshops (ICC), IEEE, 2011, 1–5.

  162. Jaleel H and Shamma J S, Distributed optimization for robot networks: From real-time convex optimization to game-theoretic self-organization, Proceedings of the IEEE, 2020, 108(11): 1953–1967.

    Article  Google Scholar 

  163. Murray R M, Recent research in cooperative control of multivehicle systems, Journal of Dynamic Systems, Measurement, and Control, 2007, 129(5): 571–583.

    Article  Google Scholar 

  164. Gazi V and Fidan B, Coordination and control of multi-agent dynamic systems: Models and approaches, International Workshop on Swarm Robotics, Springer, New York, 2006, 71–102.

    Google Scholar 

  165. Ren W, Beard R W, and Atkins E M, Information consensus in multivehicle cooperative control, IEEE Control Systems Magazine, 2007, 27(2): 71–82.

    Article  Google Scholar 

  166. Olfati-Saber R, Fax J A, and Murray R M, Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 2007, 95(1): 215–233.

    Article  MATH  Google Scholar 

  167. Antonelli G, Interconnected dynamic systems: An overview on distributed control, IEEE Control Systems Magazine, 2013, 33(1): 76–88.

    Article  MathSciNet  MATH  Google Scholar 

  168. Paley D A, Leonard N E, Sepulchre R, et al., Oscillator models and collective motion, IEEE Control Systems Magazine, 2007, 27(4): 89–105.

    Article  Google Scholar 

  169. Martinez S, Cortes J, and Bullo F, Motion coordination with distributed information, IEEE Control Systems Magazine, 2007, 27(4): 75–88.

    Article  Google Scholar 

  170. Leonard N E, Paley D A, Lekien F, et al., Collective motion, sensor networks, and ocean sampling, Proceedings of the IEEE, 2007, 95(1): 48–74.

    Article  Google Scholar 

  171. Chebotarev P Y and Agaev R P, Coordination in multiagent systems and Laplacian spectra of digraphs, Automation and Remote Control, 2009, 70(3): 469–483.

    Article  MathSciNet  MATH  Google Scholar 

  172. Cao Y, Yu W, Ren W, et al., An overview of recent progress in the study of distributed multiagent coordination, IEEE Transactions on Industrial Informatics, 2013, 9(1): 427–438.

    Article  Google Scholar 

  173. Garin F and Schenato L, A survey on distributed estimation and control applications using linear consensus algorithms, Networked Control Systems, Springer, New York, 2010, 75–107.

    Chapter  MATH  Google Scholar 

  174. Oh K K, Park M C, and Ahn H S, A survey of multi-agent formation control, Automatica, 2015, 53: 424–440.

    Article  MathSciNet  MATH  Google Scholar 

  175. Kantamneni A, Brown L E, Parker G, et al., Survey of multi-agent systems for microgrid control, Engineering Applications of Artificial Intelligence, 2015, 45: 192–203.

    Article  Google Scholar 

  176. Chen F, Ren W, et al., On the control of multi-agent systems: A survey, Foundations and Trends® in Systems and Control, 2019, 6(4): 339–499.

    Article  Google Scholar 

  177. Ren W, Beard R W, and Atkins E M, A survey of consensus problems in multi-agent coordination, Proceedings of the 2005, American Control Conference, IEEE, 2005, 1859–1864.

  178. Zelazo D, Mesbahi M, and Belabbas M A, Graph theory in systems and controls, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 6168–6179.

  179. Rizk Y, Awad M, and Tunstel E W, Cooperative heterogeneous multi-robot systems: A survey, ACM Computing Surveys (CSUR), 2019, 52(2): 1–31.

    Article  Google Scholar 

  180. Wang X and Su H, Pinning control of complex networked systems: A decade after and beyond, Annual Reviews in Control, 2014, 38(1): 103–111.

    Article  Google Scholar 

  181. Yang Y and Wang J, An overview of multi-agent reinforcement learning from game theoretical perspective, arXiv preprint arXiv: 2011.00583, 2020.

  182. Xiang L, Chen F, Ren W, et al., Advances in network controllability, IEEE Circuits and Systems Magazine, 2019, 19(2): 8–32.

    Article  Google Scholar 

  183. Yang T, Yi X, Wu J, et al., A survey of distributed optimization, Annual Reviews in Control, 2019, 47: 278–305.

    Article  MathSciNet  Google Scholar 

  184. Nedić A and Liu J, Distributed optimization for control, Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1: 77–103.

    Article  Google Scholar 

  185. Zhang R, Wang F, and Guo L, On game-based control systems and beyond, National Science Review, 2020, 7(7): 1116–1117.

    Article  Google Scholar 

  186. Ren W, Averaging algorithms and consensus, Encyclopedia of Systems and Control, 2015, 55–64, DOI: https://doi.org/10.1007/978-1-4471-5102-9_214-1.

  187. Cortées J, Networked systems, Encyclopedia of Systems and Control, 2015, 849–853, DOI: https://doi.org/10.1007/978-1-4471-5102-9_211-2.

  188. Reza Davoodi M, Gallehdari Z, Saboori I, et al., An overview of cooperative and consensus control of multiagent systems, Wiley Encyclopedia of Electrical and Electronics Engineering, 2016, DOI: https://doi.org/10.1002/047134608X.W8317.

  189. Proskurnikov A V and Cao M, Consensus in multi-agent systems, Wiley Encyclopedia of Electrical and Electronics Engineering, 2016, DOI: https://doi.org/10.1002/047134608X.W8332.

  190. Chen F and Ren W, Distributed consensus in networks, Wiley Encyclopedia of Electrical and Electronics Engineering, 2016, DOI: https://doi.org/10.1002/047134608X.W8314.

  191. Torreno A, Onaindia E, and Botti V, Planning and coordination in multiagent environments, Wiley Encyclopedia of Electrical and Electronics Engineering, 2016, DOI: https://doi.org/10.1002/047134608X.W8336.

  192. Jadbabaie A, Flocking in networked systems, Encyclopedia of Systems and Control, 2015, 458–463, DOI: https://doi.org/10.1007/978-1-4471-5102-9_215_1.

  193. Hespanha J P and Mesquita A R, Networked control systems: estimation and control over lossy networks, Encyclopedia of Systems and Control, 2015, 842–849, DOI: https://doi.org/10.1007/978-1-4471-5102-9_152-1.

  194. Yüksel S, Information and communication complexity of networked control systems, Encyclopedia of Systems and Control, 2015, 560–567, DOI: https://doi.org/10.1007/978-1-4471-5102-9_154-2.

  195. Bushnell L and Ye H, Networked control systems: Architecture and stability issues, Encyclopedia of Systems and Control, 2015, 835–842, DOI: https://doi.org/10.1007/978-1-4471-5102-9_151-2.

  196. Mesbahi M and Egerstedt M, Graphs for modeling networked interactions, Encyclopedia of Systems and Control, 2015, 510–514, DOI: https://doi.org/10.1007/978-1-4471-5102-9_212-2.

  197. Nedić A, Distributed optimization, Encyclopedia of Systems and Control, 2015, 308–317, DOI: https://doi.org/10.1007/978-1-4471-5102-9_219-1.

  198. Francis B A, Oscillator synchronization, Encyclopedia of Systems and Control, 2015, 1015–1020, DOI: https://doi.org/10.1007/978-1-4471-5102-9_216-1.

  199. Domínguez-García A D and Hadjicostis C N, Coordination of distributed energy resources for provision of ancillary services: Architectures and algorithms, Encyclopedia of Systems and Control, 2015, 241–246, DOI: https://doi.org/10.1007/978-1-4471-5058-9_268.

  200. Frazzoli E and Pavone M, Multi-vehicle routing, Encyclopedia of Systems and Control, 2015, 821–830, DOI: https://doi.org/10.1007/978-1-4471-5058-9_218.

  201. Srikant R, Network games, Encyclopedia of Systems and Control, 2015, 831–835, DOI: https://doi.org/10.1007/978-1-4471-5058-9_35.

  202. Antsaklis P and Baillieul J, Guest editorial special issue on networked control systems, IEEE Transactions on Automatic Control, 2004, 49(9): 1421–1423.

    Article  MathSciNet  MATH  Google Scholar 

  203. Panos A and John B, Special issue on technology of networked control systems, Proceedings of the IEEE, 2007, 95(1): 5–8.

    Article  Google Scholar 

  204. Arai T, Pagello E, and Parker L E, Advances in multi-robot systems, IEEE Transactions on Robotics and Automation, 2002, 18(5): 655–661.

    Article  Google Scholar 

  205. Ren W and Beard R W, Distributed Consensus in Multi-Vehicle Cooperative Control, Springer, New York, 2008.

    Book  MATH  Google Scholar 

  206. Qu Z, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles, Springer Science & Business Media, London, 2009.

    MATH  Google Scholar 

  207. Wang Y, Garcia E, Zhou Z, et al., Cooperative Control of Multi-Agent Systems, Wiley Online Library, 2017.

  208. Shamma J, Cooperative Control of Distributed Multi-Agent Systems, John Wiley & Sons, New York, 2008.

    Google Scholar 

  209. Ren W and Cao Y, Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues, Springer Science & Business Media, London, 2010.

    MATH  Google Scholar 

  210. Seyboth G, On Distributed and Cooperative Control Design for Networks of Dynamical Systems, Logos Verlag, Berlin GmbH, 2016.

    Google Scholar 

  211. Bullo F, Cortes J, and Martinez S, Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms, Princeton University Press, Princeton, 2009.

    Book  MATH  Google Scholar 

  212. Mesbahi M and Egerstedt M, Graph Theoretic Methods in Multiagent Networks, Princeton University Press, Princeton, 2010.

    Book  MATH  Google Scholar 

  213. Bullo F, Lectures on Network Systems, Kindle Direct Publishing, San Francisco, 2019.

    Google Scholar 

  214. De Queiroz M, Cai X, and Feemster M, Formation Control of Multi-Agent Systems: A Graph Rigidity Approach, John Wiley & Sons, New York, 2019.

    Book  MATH  Google Scholar 

  215. Sun Z, Cooperative Coordination and Formation Control for Multi-Agent Systems, Springer, New York, 2018.

    Book  MATH  Google Scholar 

  216. Li Z and Duan Z, Cooperative Control of Multi-Agent Systems: A Consensus Region Approach, CRC Press, Boca Raton, 2017.

    Book  Google Scholar 

  217. Lewis F L, Zhang H, Hengster-Movric K, et al., Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer Science & Business Media, London, 2013.

    MATH  Google Scholar 

  218. Bai H, Arcak M, and Wen J, Cooperative Control Design: A Systematic, Passivity-Based Approach, Springer Science & Business Media, London, 2011.

    Book  MATH  Google Scholar 

  219. Yang S, Xu J X, Li X, et al., Iterative Learning Control for Multi-Agent Systems Coordination, Wiley Online Library, New Jersey, 2017.

    Book  Google Scholar 

  220. Wang C, Zuo Z, Wang J, et al., Robust Cooperative Control of Multi-Agent Systems: A Prediction and Observation Prospective, CRC Press, Boca Raton, 2021.

    Book  Google Scholar 

  221. Chen F and Ren W, Distributed Average Tracking in Multi-Agent Systems, Springer, New York, 2020.

    Book  Google Scholar 

  222. Zhu M and Martínez S, Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments, Springer, New York, 2015.

    Book  MATH  Google Scholar 

  223. Sun D, Synchronization and Control of Multiagent Systems, CRC Press, Boca Raton, 2018.

    Book  Google Scholar 

  224. Kocarev L, Consensus and Synchronization in Complex Networks, Springer, New York, 2013.

    Book  Google Scholar 

  225. Aström K J, Albertos P, Blanke M, et al., Control of Complex Systems, Springer Science & Business Media, London, 2011.

    Google Scholar 

  226. Lü J, Yu X, Chen G, et al., Complex Systems and Networks, Springer, New York, 2016.

    Book  Google Scholar 

  227. Yu W, Wen G, Chen G, et al., Distributed Cooperative Control of Multi-Agent Systems, John Wiley & Sons, New York, 2017.

    Google Scholar 

  228. Nedić A, Pang J S, Scutari G, et al., Multi-Agent Optimization: Cetraro, Italy 2014, Springer, New York, 2018.

    Book  Google Scholar 

  229. Tatarenko T, Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems, Springer, New York, 2017.

    Book  MATH  Google Scholar 

  230. Patel K and Mehta A, Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System, Springer, New York, 2020.

    MATH  Google Scholar 

  231. Su H and Wang X, Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning, Springer Science & Business Media, London, 2013.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Chen or Wei Ren.

Additional information

This work was supported in part by the National Science Foundation of China under Grant Nos. 61973061 and 61973064, and Hebei Natural Science Foundation for Distinguished Young Scholars under Grant Nos. F2019501043 and F2019501126.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Ren, W. Multi-Agent Control: A Graph-Theoretic Perspective. J Syst Sci Complex 34, 1973–2002 (2021). https://doi.org/10.1007/s11424-021-1218-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-021-1218-6

Keywords

Navigation