Skip to main content
Log in

Algebraic Verification of Finite Group-Based Potential Games with Vector Payoffs

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper studies a class of strategic games, where players often collaborate with other players to form a group when making decisions, and the payoff functions of players in such games are presented as vector functions. First, using the semi-tensor product (STP) method, it is proved that a finite game with vector payoffs is potential if and only if its potential equation has solution. By adding a suitable weight vector to the vector payoffs of each player, a finite game with vector payoffs that is not potential can be converted into a potential game. Second, as a natural generalization, the authors consider the verification problem of the group-based potential games with vector payoffs. By solving a linear potential equation, a simple formula is obtained to calculate the corresponding potential function. Finally, some examples are presented and discussed in detail to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapley L S, Equilibrium points in games with vector payoffs, Naval Res. Logistic Quart., 1959, 6: 57–61.

    Article  MathSciNet  Google Scholar 

  2. Wang S, An existence theorem of a Pareto equilibrium, Appl. Math. Lett., 1991, 4(3): 61–63.

    Article  MathSciNet  MATH  Google Scholar 

  3. Patrone F, Pusillo L, and Tijs S, Multicriteria games and potentials, Top, 2007, 15(1): 138–145.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rettieva A, Equilibria in dynamic multicriteria games, Int. Game Theory Review, 2017, 19(1): 1750002: 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  5. Pieri G and Pusillo L, Multicriteria partial cooperative games, Appl. Math., 2015, 6(12): 2125–2131.

    Article  Google Scholar 

  6. Rosenthal R W, A class of games possessing pure-strategy Nash equilibria, Int. J. Game Theory, 1973, 2(1): 65–67.

    Article  MathSciNet  MATH  Google Scholar 

  7. Monderer D and Shapley L S, Potential games, Games Econ. Behav., 1996, 14(1): 124–143.

    Article  MathSciNet  MATH  Google Scholar 

  8. Heikkinen T, A potential game approach to distributed power control and scheduling, Comput. Netw., 2006, 50(13): 2295–2311.

    Article  MATH  Google Scholar 

  9. Zhu M and Martinez S, Distributed coverage games for energy-aware mobile sensor networks, SIAM J. Cont. Opt., 2013, 51(1): 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hao Y, Pan S, Qiao Y, et al., Cooperative control via congestion game approach, IEEE Trans. Aut. Contr., 2018, 63(12): 4361–4366.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng D, On finite potential games, Automatica, 2014, 50(7): 1793–1801.

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo P and Han C, Nash equilibrium and group strategy consensus of networked evolutionary game with coupled social groups, Appl. Math. Comput., 2021, 409: 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  13. Marden J R, Arslan G, and Shamma J S, Cooperative control and potential games, IEEE Trans. Sys., Man, Cybernetcs, Part B, 2009, 39: 1393–1407.

    Article  Google Scholar 

  14. Li C, He F, Liu T, et al., Verification and dynamics of group-based potential games, IEEE Trans. Contr. Net. Syst., 2019, 6(1): 215–224.

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu T, Wang J, Zhang X, et al., Game theoretic control of multiagent systems, SIAM J. Cont. Opt., 2019, 57(3): 1691–1709.

    Article  MathSciNet  MATH  Google Scholar 

  16. Marden J R, State based potential games, Automatica, 2012, 48(12): 3075–3088.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheng D, Qi H, and Li Z, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach, Springer, London, 2011.

    Book  MATH  Google Scholar 

  18. Li H and Wang Y, Lyapunov-based stability and construction of Lyapunov functions for Boolean networks, SIAM J. Cont. Opt., 2017, 55(6): 3437–3457.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang Y and Guo P, Optimal control of singular Boolean control networks via Ledley solution method, J. Frankl. Inst., 2021, 358(12): 6161–6173.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao G, Liang S, and Li H, Stability analysis of activation-inhibition Boolean networks with stochastic function structures, Math. Methods Appl. Sci., 2020, 43(15): 8694–8705.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu Y, Feng J, Pan J, et al., Block decoupling of Boolean control networks, IEEE Trans. Aut. Contr., 2019, 64(8): 3129–3140.

    Article  MathSciNet  MATH  Google Scholar 

  22. Li H and Ding X, A control Lyapunov function approach to feedback stabilization of logical control networks, SIAM J. Cont. Opt., 2019, 57(2): 810–831.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fu S, Zhao J, and Wang J, Input-output decoupling control design for switched Boolean control networks, J. Frankl. Inst., 2018, 355(17): 8576–8596.

    Article  MathSciNet  MATH  Google Scholar 

  24. Li H, Zheng Y, and Alsaadi F E, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, J. Comput. Appl. Math., 2019, 350: 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu J, Li H, Liu Y, et al., Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Contr. Theory Appl., 2017, 11(13): 2040–2047.

    Article  MathSciNet  Google Scholar 

  26. Wang Y, Zhang C, and Liu Z, A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems, Automatica, 2012, 48(7): 1227–1236.

    Article  MathSciNet  MATH  Google Scholar 

  27. Qi H, Wang Y, Liu T, et al., Vector space structure of finite evolutionary games and its application to strategy profile convergence, Journal of Systems Science & Complexity, 2016, 29(3): 602–628.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang Y, Cheng D, and Liu X, Matrix expression of Shapley value and its application to distributed resource allocation, Science China Inf. Sci., 2019, 62(2): 1–11.

    Article  MathSciNet  Google Scholar 

  29. Ding X, Li H, Yang Q, et al., Stochastic stability and stabilization of n-person random evolutionary Boolean games, Appl. Math. Comput., 2017, 306: 1–12.

    MathSciNet  MATH  Google Scholar 

  30. Hao Y and Cheng D, Optimization of multi-criteria facility-based systems via vector potential approach, J. Frankl. Inst., 2021, 358(9): 4972–4993.

    Article  MathSciNet  MATH  Google Scholar 

  31. Pieri G and Pusillo L, Multicriteria partial cooperative games, Appl. Math., 2015, 6(12): 2125–2131.

    Article  Google Scholar 

  32. Wang Y, Liu T, and Cheng D, From weighted potential game to weighted harmonic game, IET Contr. Theory Appl., 2017, 11(13): 2161–2169.

    Article  MathSciNet  Google Scholar 

  33. Wang Y and Cheng D, On coset weighted potential game, J. Frankl. Inst., 2020, 357(9): 5523–5540.

    Article  MathSciNet  MATH  Google Scholar 

  34. Candogan O, Menache I, Ozdaglar A, et al., Flows and decompositions of games: Harmonic and potential games, Math. Oper. Res., 2011, 36(3): 474–503.

    Article  MathSciNet  MATH  Google Scholar 

  35. Cheng D, Liu T, Zhang K, et al., On decomposed subspaces of finite games, IEEE Trans. Aut. Contr., 2016, 61(11): 3651–3656.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhua Wang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61903236, 62073202, and 61803240, Shandong Provincial National Science Foundation under Grant No. ZR2018BF021 and China Postdoctoral Science Foundation under Grant No. 2017M622262.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, H. Algebraic Verification of Finite Group-Based Potential Games with Vector Payoffs. J Syst Sci Complex 35, 2131–2144 (2022). https://doi.org/10.1007/s11424-022-1064-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-022-1064-1

Keywords

Navigation