Skip to main content
Log in

Single-Index Quantile Regression with Left Truncated Data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The purpose of this paper is two fold. First, the authors investigate quantile regression (QR) estimation for single-index QR models when the response is subject to random left truncation. The random weights are introduced to deal with left truncated data and the associated iteration estimation method is proposed. The asymptotic properties for the proposed QR estimates of the index parameter and unknown link function are both obtained. Further, by combining the QR loss function and the adaptive LASSO penalization, a variable selection procedure for the index parameter is introduced and its oracle property is established. Second, a weighted empirical log-likelihood ratio of the index parameter based on the QR method is introduced and is proved to be asymptotic standard chi-square distribution. Furthermore, confidence regions of the index parameter can be constructed. The finite sample performance of the proposed methods are demonstrated. A real data analysis is also conducted to show the usefulness of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Härdle W and Stoker T, Investing smooth multiple regression by the method of average derivatives, Journal of the American Statistical Association, 1989, 84: 986–995.

    MathSciNet  MATH  Google Scholar 

  2. Härdle W, Hall P, and Ichimura H, Optimal smoothing in single-index models, Annals of Statistics, 1993, 21: 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaudhuri P, Doksum K, and Samarov A, On average derivative quantile regression, Annals of Statistics, 1997, 25: 715–744.

    Article  MathSciNet  MATH  Google Scholar 

  4. Delecroix M, Hristache M, and Patilea V, On semiparametric m-estimation in single-index regression, Journal of Statistical Planning and Inference, 2006, 136: 730–769.

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhu L P and Zhu L X, Nonconcave penalized inverse regression in single-index models with high dimensional predictors, Journal of Multivariate Analysis, 2009, 100: 862–875.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu T, Yu K, and Yu Y, Single-index quantile regression, Journal of Multivariate Analysis, 2010, 101: 1607–1621.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kong E and Xia Y, A single-index quantile regression model and its estimation, Econometric Theory, 2012, 28: 730–768.

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu J C, Zhang R Q, Zhao W H, et al., A robust and efficient estimation method for single index models, Journal of Multivariate Analysis, 2013, 122: 226–238.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lu Y Q, Zhang R Q, and Hu B, The adaptive LASSO spline estimation of single-index model, Journal of Systems Science and Complexity, 2016, 29: 1100–1111.

    Article  MathSciNet  MATH  Google Scholar 

  10. Koenker R and Bassett G, Regression quantiles, Econometrica, 1978, 46: 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang H J, Zhu Z, and Zhou J, Quantile regression in partially linear varying coefficient models, Annals of Statistics, 2009, 37: 3841–3866.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lv Y Z, Zhang R Q, Zhao W H, et al., Quantile regression and variable selection for the single-index model, Journal of Applied Statistics, 2014, 41: 1565–1577.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lv Y Z, Zhang R Q, Zhao W H, et al., Quantile regression and variable selection of partial linear single-index model, Annals of the Institute of Statistical Mathematics, 2015, 67: 375–409.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang R, Qian W M, and Zhou Z G, Weighted composite quantile regression for single-index models, Journal of Multivariate Analysis, 2016, 148: 34–48.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang R, Zhou Z G, and Qian W M, Two step composite quantile regression for single-index models, Computational Statistics and Data Analysis, 2013, 64: 180–191.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma S J and He X M, Inference for single-index quantile regression models with profile optimization, Annals of Statistics, 2016, 44: 1234–1268.

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang R and Qian W M, Quantile regression for single-index-coefficient regression models, Statistics & Probability Letters, 2016, 110: 305–317.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao W H, Zhang R Q, Lü Y Z, et al., Quantile regression and variable selection of single-index coefficient model, Annals of the Institute of Statistical Mathematics, 2017, 69: 761–789.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li H F, Liu Y, and Luo Y X, Double penalized quantile regression for the linear mixed effects model, Journal of Systems Science and Complexity, 2020, 33(6): 2080–2102.

    Article  MathSciNet  MATH  Google Scholar 

  20. Klein J P and Moeschberger M L, Survival Analysis: Techniques for Censored and Truncated Data, Springer, New York, 2003.

    Book  MATH  Google Scholar 

  21. Woodroofe W, Estimation a distribution function with truncated data, Annals of Statistics, 1985, 13: 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  22. He S Y and Yang G L, Estimation of the truncation probability in the random truncation model, Annals of Statistics, 1998, 26: 1011–1027.

    Article  MathSciNet  MATH  Google Scholar 

  23. He S Y and Yang G L, Estimation of regression parameters with left truncated data, Journal of Statistical Planning and Inference, 2003, 117: 99–122.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ould-Saïd E and Lemdani M, Asymptotic properties of a nonparametric regression function estimator with randomly truncated data, Annals of the Institute of Statistical Mathematics, 2006, 58: 357–378.

    Article  MathSciNet  MATH  Google Scholar 

  25. Stute W and Wang J L, The central limit theorem under random truncation, Bernoulli, 2008, 14: 604–622.

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou W H, A weighted quantile regression for randomly truncated data, Computational Statistics and Data Analysis, 2011, 55: 554–566.

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu H X, Fan G L, Chen Z L, et al., Weighted quantile regression and testing for varying-coefficient models with randomly truncated data, AStA-Advances in Statistical Analysis, 2018, 102: 565–588.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu H X, Chen Z L, Wang J F, et al., Quantile regression and variable selection for partially linear model with randomly truncated data, Statistical Papers, 2019, 60: 1137–1160.

    Article  MathSciNet  MATH  Google Scholar 

  29. Lemdani M, Ould-Saïd E, and Poulin P, Asymptotic properties of a conditional quantile estimator with randomly truncated data, Journal of Multivariate Analysis, 2009, 100: 546–559.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liang H Y and Liu A A, Kernel estimation of conditional density with truncated, censored and dependent data, Journal of Multivariate Analysis, 2013, 120: 40–58.

    Article  MathSciNet  MATH  Google Scholar 

  31. Liang H Y and Baek J I, Asymptotic normality of conditional density estimation with left-truncated and dependent data, Statistical Papers, 2016, 57: 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  32. Yao M, Wang J F, Lin L, et al., Variable selection and weighted composite quantile estimation of regression parameters with left-truncated data, Communications in Statistics — Theory and Methods, 2018, 47: 4469–4482.

    Article  MathSciNet  MATH  Google Scholar 

  33. Xue L G and Zhu L X, Empirical likelihood for single-index models, Journal of Multivariate Analysis, 2006, 97: 1295–1312.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang H and Leng C, Unified lasso estiation via least squares approximation, Journal of the American Statistical Association, 2007, 102: 1039–1048.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu L X and Xue L G, Empirical likelihood confidence regions in a partially linear single-index model, Journal of the Royal Statistical Society Series B, 2006, 68: 549–570.

    Article  MathSciNet  MATH  Google Scholar 

  36. Yeh I C, Modeling of strength of high performance concrete using artificial neural networks, Cement and Concrete Research, 1998, 28: 1797–1808.

    Article  Google Scholar 

  37. Kai B, Li R Z, and Zou H, New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models, Annals of Statistics, 2011, 39: 305–332.

    Article  MathSciNet  MATH  Google Scholar 

  38. Mack Y and Silverman B W, Weak and strong uniform consistency of kernel regression estimates, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1982, 61(3): 405–415.

    Article  MathSciNet  MATH  Google Scholar 

  39. Owen A B, Empirical likelihood ratio confidence regions, Annals of Statistics, 1990, 18: 90–120.

    Article  MathSciNet  MATH  Google Scholar 

  40. Knight K, Limiting distributions for l 1 regression estimators under general conditions, Annals of Statistics, 1998, 26: 755–770.

    Article  MathSciNet  MATH  Google Scholar 

  41. Xia Y and Härdle W, Semi-parametric estimation of partially linear single-index models, Journal of Multivariate Analysis, 2006, 97(5): 1162–1184.

    Article  MathSciNet  MATH  Google Scholar 

  42. Geyer C J, On the asymptotics of constrained m-estimation, Annals of Statistics, 1994, 22: 1993–2010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Fan.

Additional information

This research was supported by the National Social Science Foundation of China under Grant No. 21BTJ038.

This paper was recommended for publication by Editor JIN Baisuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Fan, G. & Li, J. Single-Index Quantile Regression with Left Truncated Data. J Syst Sci Complex 35, 1963–1987 (2022). https://doi.org/10.1007/s11424-022-1118-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-022-1118-4

Keywords

Navigation