Skip to main content
Log in

Distributed \({H_\infty }\) Consensus Problem for First-Order Multi-Agent Systems with Antagonistic Interactions and Nonconvex Constraints

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates the distributed \({H_\infty }\) consensus problem for a first-order multiagent system where both cooperative and antagonistic interactions coexist. In the presence of external disturbances, a distributed control algorithm using local information is addressed and a sufficient condition to get the \({H_\infty }\) control gain is obtained, which make the states of the agents in the same group converge to a common point while the inputs of each agent are constrained in the nonconvex sets. Finally, a numerical simulation is exhibited to illustrate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao F, Wang L, and Wang A, Consensus problems in discrete-time multiagent systems with fixed topology, Journal of Mathematical Analysis and Applications, 2006, 322(2): 587–598.

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu H, Xie G, and Wang L, Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control, International Journal of Robust and Nonlinear Control, 2010, 20(15): 1706–1722.

    Article  MathSciNet  MATH  Google Scholar 

  3. Su H, Wang X, and Zeng Z, Consensus of second-order hybrid multiagent systems by event-triggered strategy, IEEE Transactions on Cybernetics, 2020, 50(11): 4648–4657.

    Article  Google Scholar 

  4. Wang D, Zhang N, Wang J, et al., A PD-like protocol with a time delay to average consensus control for multi-agent systems under an arbitrarily fast switching topology, IEEE Transactions on Cybernetics, 2017, 47(4): 898–907.

    Google Scholar 

  5. Qiu L, Guo L, and Liu J, Mean square average generalized consensus of multi-agent systems under time-delays and stochastic disturbances, Journal of Systems Science & Complexity, 2019, 32(2): 588–599.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang D, Wang Z, and Wen C, Distributed optimal consensus control for a class of uncertain nonlinear multiagent networks with disturbance rejection using adaptive technique, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4389–4399.

    Article  Google Scholar 

  7. Su H, Wu H, Chen X, et al., Positive edge consensus of complex networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(12): 2242–2250.

    Article  Google Scholar 

  8. Su H, Ye Y, Qiu Y, et al., Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances, IEEE Transactions on Cybernetics, 2019, 49(11): 3934–3945.

    Article  Google Scholar 

  9. Sun H, Wang Z, Xu J, et al., Exact consensus error for multi-agent systems with additive noises, Journal of Systems Science and Complexity, 2020, 33(3): 640–651.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang D, Wang Z, Wang Z, et al., Design of hybrid event-triggered containment controllers for homogeneous and heterogeneous multiagent systems, IEEE Transactions on Cybernetics, 2021, 51(10): 4885–4896.

    Article  Google Scholar 

  11. Nedic A, Ozdaglar A, and Parrilo P A, Constrained consensus and optimization in multi-agent networks, IEEE Transactions on Automatic Control, 2010, 55(4): 922–938.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin P, Ren W, Yang C, et al., Distributed consensus of second-order multiagent systems with nonconvex velocity and control input constraints, IEEE Transactions on Automatic Control, 2018, 63(4): 1171–1176.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin P, Ren W, Yang C, et al., Distributed optimization with nonconvex velocity constraints, nonuniform position constraints, and nonuniform stepsizes, IEEE Transactions on Automatic Control, 2019, 64(6): 2575–2582.

    Article  MathSciNet  MATH  Google Scholar 

  14. Meng Z, Zhao Z, and Lin Z, On global leader-following consensus of identical linear dynamic systems subject to actuator saturation, Systems and Control Letters, 2013, 62(2): 132–142.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang T, Meng Z, Dimarogonas D V, et al., Global consensus for discrete-time multi-agent systems with input saturation constraints, Automatica, 2014, 50(2): 499–506.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ji M, Ferrari-trecate G, Egerstedt M, et al., Containment control in mobile networks, IEEE Transactions on Automatic Control, 2008, 53(8): 1972–1975.

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu C, Zheng Y, Su H, et al., Necessary and sufficient conditions for distributed containment control of multi-agent systems without velocity measurement, Control Theory and Applications Iet, 2014, 8(16): 1752–1759.

    Article  MathSciNet  Google Scholar 

  18. Li B, Chen Z, Liu Z, et al., Containment control of multi-agent systems with fixed time-delays in fixed directed networks, Neurocomputing, 2015, 173(3): 2069–2075.

    Google Scholar 

  19. Lin P, Xu J, Ren W, et al. Angle-based analysis approach for distributed constrained optimization, IEEE Transactions on Automatic Control, 2021, 66(11): 5569–5576.

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi G, Johansson K H, and Hong Y, Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets, IEEE Transactions on Automatic Control, 2013, 58(3): 610–622.

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin P and Ren W, Constrained consensus in unbalanced networks with communication delays, IEEE Transactions on Automatic Control, 2014, 59(3): 775–781.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin P, Ren W, and Song Y, Distributed multi-agent optimization subject to nonidentical constraints and communication delays, Automatica, 2016, 65: 120–131.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin P, Ren W, and Gao H, Distributed velocity-constrained consensus of discrete-time multiagent systems with nonconvex constraints, switching topologies, and delays, IEEE Transactions on Automatic Control, 2017, 62(11): 5788–5794.

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin P, Ren W, and Farrell J A, Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set, IEEE Transactions on Automatic Control, 2017, 62(5): 2239–2253.

    Article  MathSciNet  MATH  Google Scholar 

  25. Altifini C, Consensus problems on networks with antagonistic interactions, IEEE Transactions on Automatic Control, 2013, 58(4): 935–946.

    Article  MathSciNet  Google Scholar 

  26. Lu W, Dai M, and Xue F, Antagonistic formation motion of cooperative agents, Chinese Physics B, 2015, 24(2): 101–104.

    Article  Google Scholar 

  27. Lin P, Jia Y, and Li L, Distributed robust \({H_\infty }\) consensus control in directed networks of agents with time-delay, Systems and Control Letters, 2008, 57(8): 643–653.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang H, Yang R, Yan H, et al., \({H_\infty }\) consensus of event-based multi-agent systems with switching topology, Information Sciences, 2016, 370(20): 623–635.

    Article  MATH  Google Scholar 

  29. Wang Y and Wu Q, Distributed robust \({H_\infty }\) consensus for multi-agent systems with nonlinear dynamics and parameter uncertainties, Asian Journal of Control, 2015, 17(1): 352–361.

    Article  MathSciNet  MATH  Google Scholar 

  30. Li P, Qin K, and Shi M, Distributed robust \({H_\infty }\) rotating consensus control for directed networks of second-order agents with mixed uncertainties and time-delay, Neurocomputing, 2015, 148: 332–339.

    Article  Google Scholar 

  31. Lin P and Jia Y, Robust \({H_\infty }\) consensus analysis of a class of second-order multi-agent systems with uncertainty, IET Control Theory and Applications, 2010, 4(3): 487–498.

    Article  MathSciNet  Google Scholar 

  32. Mo L and Jia Y, \({H_\infty }\) consensus control of a class of high-order multi-agent systems, IET Control Theory and Applications, 2011, 5(1): 247–253.

    Article  MathSciNet  Google Scholar 

  33. Godsil C and Royle G, Algebraic Graph Theory, Springer-Verlag, New York, 2001.

    Book  MATH  Google Scholar 

  34. Dullerud G and Paganini F, A Course in Robust Control Theory, Springer, New York, 2010.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Chen, S. & Wang, X. Distributed \({H_\infty }\) Consensus Problem for First-Order Multi-Agent Systems with Antagonistic Interactions and Nonconvex Constraints. J Syst Sci Complex 36, 540–554 (2023). https://doi.org/10.1007/s11424-023-1250-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-1250-9

Keywords

Navigation