Skip to main content
Log in

Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered observations. The authors adopt a direct approach, i.e., without identifying the unknown parameters and functions within the systems, adaptive regulators are directly designed based on the event-triggered observations on the regulation errors. The adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions, the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically minimized. The authors also testify the theoretical results through simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirkörstner F and Lunze J, Discrete-event models of quantized systems for diagnosis, International Journal of Control, 2001, 74(6): 690–700.

    MathSciNet  MATH  Google Scholar 

  2. Hendricks E, Chevalier A, and Jensen M, Event based engine control: Practical problems and solutions, SAE Technical Paper, 1995, 950008.

  3. Hendricks E, Jensen M, Chevalier A, et al., Conventional event based engine control, SAE Technical Paper, 1994, 940377.

  4. Shi D, Xue J, Wang J, et al., A high-gain approach to event-triggered control with applications to motor systems, IEEE Transactions on Industrial Electronics, 2019, 66(8): 6281–6291.

    Article  Google Scholar 

  5. Dodds S J, Adaptive, high precision, satellite attitude control for microprocessor implementation, Automatica, 1981, 17(4): 563–573.

    Article  Google Scholar 

  6. Hristu-Varsakelis D and Kumar P R, Interrupt-based feedback control over a shared communication medium, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 2002.

  7. Qi W, Hou Y, Zong G, et al., Finite-time event-triggered control for semi-Markovian switching cyber-physical systems with FDI attacks and applications, IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(6): 2665–2674.

    Article  MathSciNet  Google Scholar 

  8. Qi W, Zong G, and Zheng W X, Adaptive event-triggered SMC for stochastic switching systems with semi-Markov process and application to boost converter circuit model, IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(2): 786–796.

    Article  MathSciNet  Google Scholar 

  9. Huo X, Karimi R, Zhao X, et al., Adaptive-critic design for decentralized event-triggered control of constrained nonlinear interconnected systems within an identifier-critic framework, IEEE Transactions on Cybernetics, 2021, DOI: https://doi.org/10.1109/TCYB.2020.3037321.

  10. Abdelrahim M, Postoyan R, Daafouz J, et al., Stabilization of nonlinear systems using event-triggered output feedback controllers, IEEE Transactions on Automatic Control, 2016, 61(9): 2682–2687.

    Article  MathSciNet  MATH  Google Scholar 

  11. Abdelrahim M, Postoyan R, Daafouz J, et al., Robust event-triggered output feedback controllers for nonlinear systems, Automatica, 2017, 75): 96–108.

    Article  MathSciNet  MATH  Google Scholar 

  12. Astrom K J and Bernhardsson B M, Comparison of Riemann and Lebesgue sampling for first order stochastic systems, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 2002.

  13. Diao J D, Guo J, and Sun C Y, Event-triggered identification of FIR systems with binary-valued output observations, Automatica, 2018, 98): 95–102.

    Article  MathSciNet  MATH  Google Scholar 

  14. Girard A, Dynamic triggering mechanisms for event-triggered control, IEEE Transactions on Automatic Control, 2015, 60(7): 1992–1997.

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo J and Diao J D, FIR system identification under either-or communication with quantised inputs and quantised output observations, IET Control Theory Applications, 2019, 19(8): 1204–1210.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ha M, Wang D, and Liu D, Event-triggered adaptive critic control design for discrete-time constrained nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3158–3168.

    Article  Google Scholar 

  17. Han D, You K, Xie L, et al., Optimal parameter estimation under controlled communication over sensor networks, IEEE Transactions on Signal Processing, 2015, 63(24): 6473–6485.

    Article  MathSciNet  MATH  Google Scholar 

  18. He M and Li J M, Event-triggered adaptive tracking control for a class of uncertain stochastic nonlinear systems with Markov jumping parameters, International Journal of Adaptive Control and Signal Processing, 2018, 32(12): 1655–1674.

    Article  MathSciNet  MATH  Google Scholar 

  19. Heemels W P, Johansson K H, and Tabuada P, An introduction to event-triggered and self-triggered control, The 51st IEEE Conference on Decision and Control (CDC), Maul, Hawall, 2012.

  20. Heemels W P, Donkers M C, and Teel A R, Periodic event-triggered control for linear systems, IEEE Transactions on Automatic Control, 2013, 58(4): 847–861.

    Article  MathSciNet  MATH  Google Scholar 

  21. Li H, Chen Z, Wu L, et al., Event-triggered control for nonlinear systems under unreliable communication links, IEEE Transactions on Fuzzy Systems, 2016, 25(4): 813–824.

    Article  Google Scholar 

  22. Lian J and Li C, Event-triggered adaptive tracking control of uncertain switched nonlinear systems, Int. J. Robust Nonlinear Control, 2021, 31(9): 4154–4169.

    Article  MathSciNet  Google Scholar 

  23. Ma H, Li H Y, Lu R Q, et al., Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, Science China Information Sciences, 2020, 63(5): 1–15.

    Article  MathSciNet  Google Scholar 

  24. Postoyan R, Tabuada P, Nešić D, et al., A framework for the event-triggered stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 2015, 60(4): 982–996.

    Article  MathSciNet  MATH  Google Scholar 

  25. Tallapragada P and Cortés J, Event-triggered stabilization of linear systems under bounded bit rates, IEEE Transactions on Automatic Control, 2016, 61(6): 1575–1589.

    Article  MathSciNet  MATH  Google Scholar 

  26. You K, Xie L, and Song S, Asymptotically optimal parameter estimation with scheduled measurements, IEEE Transactions on Signal Processing, 2013, 61(14): 3521–3531.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheng Y and Ugrinovskii V, Event-triggered leader-following tracking control for multivariable multi-agent systems, Automatica, 2016, 70): 204–210.

    Article  MathSciNet  MATH  Google Scholar 

  28. Cui K X, Tang S X, Huang Y, et al., Event-triggered active disturbance rejection control for a class of networked systems with unmatched uncertainties: Theoretic and experimental results, Control Engineering Practice, 2021, 115): 104907.

    Article  Google Scholar 

  29. Dimarogonas D V, Frazzoli E, and Johansson K H, Distributed event-triggered control for multiagent systems, IEEE Transactions on Automatic Control, 2012, 57(5): 1291–1297.

    Article  MathSciNet  MATH  Google Scholar 

  30. Fan Y, Feng G, Wang Y, et al., Distributed event-triggered control of multi-agent systems with combinational measurements, Automatica, 2013, 49(2): 671–675.

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen Z Y, Niu B, Zhao X, et al., Model-based adaptive event-triggered control of nonlinear continuous-time systems, Applied Mathematics and Computation, 2021, 408): 126330.

    Article  MathSciNet  MATH  Google Scholar 

  32. Sjoberg J, Zhang Q H, Ljung L, et al., Nonlinear black-box modeling in system identification: A unified overview, Automatica, 1995, 31(12): 1691–1724.

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen H F, Adaptive regulator for Hammerstein and Wiener systems with noisy observations, IEEE Transactions on Automatic Control, 2007, 52(4): 703–709.

    Article  MathSciNet  MATH  Google Scholar 

  34. Feng W H and Chen H F, Adaptive tracking for NARX system based on stochastic approximation algorithm, The 39th Chinese Control Conference (CCC), Shenyang, 2020.

  35. Guo L and Chen H F, The Astrom-Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers, IEEE Transactions on Automatic Control, 1991, 36(7): 802–812.

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen H F, Stochastic Approximation and Its Applications, Kluwer, Dordrecht, The Netherland, 2002.

    MATH  Google Scholar 

  37. Chen H F and Zhao W X, Recursive Identification and Parameter Estimation, CRC Press, Boca Raton, FL, USA, 2014.

    Book  MATH  Google Scholar 

  38. Nevelson M B and Khasminskii R Z, Stochastic approximation and recursive estimation, Translation of Math. Monographs, Amer. Math. Soc., Providence, RI, 1976, 47.

    Google Scholar 

  39. Chen H F and Guo L, Identification and Stochastic Adaptive Control, Birkhäuser, Boston, MA, 1991.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiao Zhao.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This paper was supported by the National Key Research and Development Program of China under Grant No. 2018YFA0703800, the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research under Grant No. YSBR-008, and the Strategic Priority Research Program of CAS under Grant No. XDA27000000.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zhao, W. & Gao, J. Adaptive Regulation for Hammerstein and Wiener Systems with Event-Triggered Observations. J Syst Sci Complex 36, 1878–1904 (2023). https://doi.org/10.1007/s11424-023-2005-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-2005-3

Keywords