Skip to main content
Log in

Support Recovery of Gaussian Graphical Model with False Discovery Rate Control

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper focuses on the support recovery of the Gaussian graphical model (GGM) with false discovery rate (FDR) control. The graceful symmetrized data aggregation (SDA) technique which involves sample splitting, data screening and information pooling is exploited via a node-based way. A matrix of test statistics with symmetry property is constructed and a data-driven threshold is chosen to control the FDR for the support recovery of GGM. The proposed method is shown to control the FDR asymptotically under some mild conditions. Extensive simulation studies and a real-data example demonstrate that it yields a better FDR control while offering reasonable power in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauritzen S L, Graphical Models, Clarendon Press, Oxford, 1996.

    Book  MATH  Google Scholar 

  2. Meinshausen N and Bühlmann P, High-dimensional graphs and variable selection with the lasso, Annals of Statistics, 2006, 34(3): 1436–1462.

    Article  MathSciNet  MATH  Google Scholar 

  3. Tibshirani R, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267–288.

    MathSciNet  MATH  Google Scholar 

  4. Candès E and Tao T, The dantzig selector: Statistical estimation when p is much larger than n, Annals of Statistics, 2007, 35(6): 2313–2351.

    MathSciNet  MATH  Google Scholar 

  5. Cai T, Liu W D, and Luo X, A constrained l1 minimization approach to sparse precision matrix estimation, Journal of the American Statistical Association, 2011, 106(494): 594–607.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun T N and Zhang C H, Sparse matrix inversion with scaled lasso, Journal of Machine Learning Research, 2013, 14(1): 3385–3418.

    MathSciNet  MATH  Google Scholar 

  7. Yuan M and Lin Y, Model selection and estimation in the gaussian graphical model, Biometrika, 2007, 94(1): 19–35.

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman J, Hastie T, and Tibshirani R, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, 2008, 9(3): 432–441.

    Article  MATH  Google Scholar 

  9. Witten D M, Friedman J H, and Simon N, New insights and faster computations for the graphical lasso, Journal of Computational and Graphical Statistics, 2011, 20(4): 892–900.

    Article  MathSciNet  Google Scholar 

  10. Mazumder R and Hastie T, Exact covariance thresholding into connected components for large-scale graphical lasso, Journal of Machine Learning Research, 2012, 13(1): 781–794.

    MathSciNet  MATH  Google Scholar 

  11. Mazumder R and Hastie T, The graphical lasso: New insights and alternatives, Electronic Journal of Statistics, 2012, 6: 2125.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rothman A J, Bickel P J, Levina E, et al., Sparse permutation invariant covariance estimation, Electronic Journal of Statistics, 2008, 2: 494–515.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ravikumar P, Wainwright M J, Raskutti G, et al., High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence, Electronic Journal of Statistics, 2011, 5: 935–980.

    Article  MathSciNet  MATH  Google Scholar 

  14. Benjamini Y and Hochberg Y, Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(1): 289–300.

    MathSciNet  MATH  Google Scholar 

  15. Benjamini Y and Yekutieli D, The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, 2001, 29(4): 1165–1188.

    Article  MathSciNet  MATH  Google Scholar 

  16. Drton M and Perlman M D, Multiple testing and error control in gaussian graphical model selection, Statistical Science, 2007, 22(3): 430–449.

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu W D, Gaussian graphical model estimation with false discovery rate control, Annals of Statistics, 2013, 41(6): 2948–2978.

    Article  MathSciNet  MATH  Google Scholar 

  18. Li J Z and Maathuis M H, GGM knockoff filter: False discovery rate control for gaussian graphical models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2021, 83(3): 534–558.

    Article  MathSciNet  MATH  Google Scholar 

  19. Barber R F and Candès E J, Controlling the false discovery rate via knockoffs, Annals of Statistics, 2015, 43(5): 2055–2085.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou J, Li Y, Zheng Z M, et al., Reproducible learning in large-scale graphical models, Journal of Multivariate Analysis, 2022, 189: 104934.

    Article  MathSciNet  MATH  Google Scholar 

  21. Candès E, Fan Y Y, Janson L, et al., Panning for gold: ‘Model-x’ knockoffs for high dimensional controlled variable selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2018, 80(3): 551–577.

    Article  MathSciNet  MATH  Google Scholar 

  22. Anderson T W, An Introduction to Multivariate Statistical Analysis (Wiley Series in Probability and Statistics), World Publishing Co., Beijing, 2003.

    MATH  Google Scholar 

  23. Du L L, Guo X, Sun W G, et al., False discovery rate control under general dependence by symmetrized data aggregation, Journal of the American Statistical Association, 2023, 118(541): 607–621.

    Article  MathSciNet  MATH  Google Scholar 

  24. Meinshausen N, Meier L, and Bühlmann P, P-values for high-dimensional regression, Journal of the American Statistical Association, 2009, 104(488): 1671–1681.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang X Y and Leng C L, High dimensional ordinary least squares projection for screening variables, Journal of the Royal Statistical Society: Series B: (Statistical Methodology), 2016, 78(3): 589–611.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wasserman L and Roeder K, High dimensional variable selection, Annals of Statistics, 2009, 37(5A): 2178.

    Article  MathSciNet  MATH  Google Scholar 

  27. Barber R F, Candès E J, and Samworth R J, Robust inference with knockoffs, Annals of Statistics, 2020, 48(3): 1409–1431.

    Article  MathSciNet  MATH  Google Scholar 

  28. De Geer S A V and Bühlmann P, On the conditions used to prove oracle results for the lasso, Electronic Journal of Statistics, 2009, 3: 1360–1392.

    MathSciNet  MATH  Google Scholar 

  29. Bühlmann P and Mandozzi J, High-dimensional variable screening and bias in subsequent inference, with an empirical comparison, Computational Statistics, 2014, 29(3): 407–430.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu W D and Shao Q M, Phase transition and regularized bootstrap in large-scale t-tests with false discovery rate control, Annals of Statistics, 2014, 42(5): 2003–2025.

    Article  MathSciNet  MATH  Google Scholar 

  31. Xia Y, Cai T X, and Cai T T, Testing differential networks with applications to the detection of gene-gene interactions, Biometrika, 2015, 102(2): 247–266.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao T, Liu H, Roeder K, et al., The huge package for high-dimensional undirected graph estimation in R, Journal of Machine Learning Research, 2012, 13(1): 1059–1062.

    MathSciNet  MATH  Google Scholar 

  33. Zhang R, Ren Z, and Chen W, SILGGM: An extensive r package for efficient statistical inference in large-scale gene networks, PLoS Computational Biology, 2018, 14(8): e1006369.

    Article  Google Scholar 

  34. Drton M and Maathuis M H, Structure learning in graphical modeling, Annual Review of Statistics and Its Application, 2017, 4: 365–393.

    Article  Google Scholar 

  35. He Y, Zhang X S, Wang P P, et al., High dimensional gaussian copula graphical model with FDR control, Computational Statistics & Data Analysis, 2017, 113: 457–474.

    Article  MathSciNet  MATH  Google Scholar 

  36. Cai T, Liu W D, and Xia Y, Two-sample covariance matrix testing and support recov6ery in high-dimensional and sparse settings, Journal of the American Statistical Association, 2013, 108(501): 265–277.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojun Wang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported partially by the China National Key R&D Program under Grant Nos. 2019YFC1908502, 2022YFA1003703, 2022YFA1003802, and 2022YFA1003803, and the National Natural Science Foundation of China under Grant Nos. 11925106, 12231011, 11931001, and 11971247.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Y. & Wang, Z. Support Recovery of Gaussian Graphical Model with False Discovery Rate Control. J Syst Sci Complex 36, 2605–2623 (2023). https://doi.org/10.1007/s11424-023-2123-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-2123-y

Keywords

Navigation