Skip to main content
Log in

Mixed H/Passive Exponential Synchronization for Delayed Memristive Neural Networks with Switching Event-Triggered Control

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper is devoted to event-triggered synchronization of delayed memristive neural networks with H and passivity performance. The aim is to guarantee the exponential synchronization and mixed H and passivity control for memristive neural networks by using event-triggered control. Firstly, a switching system is constructed under the event-triggered control strategy. Then, by adopting a piece-wise Lyapunov functional, a sufficient condition is established for the exponential synchronization and mixed H and passivity performance. Moreover, an event-triggered controller design scheme is proposed using matrix decoupling method. Finally, the effectiveness of the designed controller is exemplified by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastassiou G A, Intelligent Systems: Approximation by Artificial Neural Networks, Springer, Heidelberg, 2011.

    Book  Google Scholar 

  2. Bahrammirzaee A, A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert system and hybrid intelligent systems, Neural Computing and Applications, 2010, 19(8): 1165–1195.

    Article  Google Scholar 

  3. Itoh M and Chua L, Memristor cellular automata and memristor discrete-time cellular neural networks, International Journal of Bifurcation and Chaos, 2009, 19(11): 3605–3656.

    Article  ADS  Google Scholar 

  4. Di Marco M, Forti M, and Pancioni L, Stability of memristor neural networks with delays operating in the flux-charge domain, Journal of the Franklin Institute, 2018, 355(12): 5135–5162.

    Article  MathSciNet  Google Scholar 

  5. Duan S, Hu X, Dong Z, et al., Memristor-based cellular nonlinear/neural network: Design, analysis, and applications, IEEE Transactions on Neural Networks and Learning Systems, 2014, 26(6): 1202–1213.

    Article  MathSciNet  PubMed  Google Scholar 

  6. Wang L and Shen Y, Design of controller on synchronization of memristor-based neural networks with time-varying delays, Neurocomputing, 2015, 147: 372–379.

    Article  Google Scholar 

  7. Yang X and Ho D W, Synchronization of delayed memristive neural networks: Robust analysis approach, IEEE Transactions on Cybernetics, 2015, 46(12): 3377–3387.

    Article  Google Scholar 

  8. Gong S, Guo Z, and Wen S, Finite-time synchronization of TS fuzzy memristive neural networks with time delay, Fuzzy Sets and Systems, 2023, 459: 67–81.

    Article  MathSciNet  Google Scholar 

  9. Guo Z, Yang S, and Wang J, Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling, IEEE Transactions on Neural Networks and Learning Systems, 2014, 26(6): 1300–1311.

    Article  MathSciNet  PubMed  Google Scholar 

  10. Zhang L and Yang Y, Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch, Journal of the Franklin Institute, 2018, 355(3): 1217–1240.

    Article  MathSciNet  Google Scholar 

  11. Wei R and Cao J, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Networks, 2019, 113: 1–10.

    Article  PubMed  Google Scholar 

  12. Tabuada P, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Transactions on Automatic Control, 2007, 52(9): 1680–1685.

    Article  MathSciNet  Google Scholar 

  13. Heemels W P, Johansson K H, and Tabuada P, An introduction to event-triggered and self-triggered control. Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control, Maui, 2012.

  14. Pop T, Eles P, and Peng Z, Holistic scheduling and analysis of mixed time/event-triggered distributed embedded systems, Proceedings of the Tenth International Symposium on Hardware/Software Codesign, Estes Park, 2022.

  15. Lin N, Chi R, and Huang B, Event-triggered model-free adaptive control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(6): 3358–3369.

    Article  Google Scholar 

  16. Yue D, Tian E, and Han Q L, A delay system method for designing event-triggered controllers of networked control systems, IEEE Transactions on Automatic Control, 2012, 58(2): 475–481.

    Article  MathSciNet  Google Scholar 

  17. Yao W, Wang C, Sun Y, et al., Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control, Neurocomputing, 2020, 404: 367–380.

    Article  Google Scholar 

  18. Li X, Zhang W, Fang J A, et al., Event-triggered exponential synchronization for complex-valued memristive neural networks with time-varying delays, IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(10): 4104–4116.

    Article  MathSciNet  PubMed  Google Scholar 

  19. Chang Q, Park J H, Yang Y, et al., Finite-time multiparty synchronization of T-S fuzzy coupled memristive neural networks with optimal event-triggered control, IEEE Transactions on Fuzzy Systems, 2022, 31(8): 2545–2555.

    Article  Google Scholar 

  20. Ping J, Zhu S, Shi M, et al., Event-triggered finite-time synchronization control for quaternion-valued memristive neural networks by a non-decomposition method, IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3609–3619.

    MathSciNet  Google Scholar 

  21. Cao Y, Wang S, Guo Z, et al., Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control, Neural Networks, 2019, 119: 178–189.

    Article  PubMed  Google Scholar 

  22. Yan Z, Huang X, Fan Y, et al., Threshold-function-dependent quasi-synchronization of delayed memristive neural networks via hybrid event-triggered control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(11): 6712–6722.

    Article  Google Scholar 

  23. Chen J, Chen B, and Zeng Z, Exponential quasi-synchronization of coupled delayed memristive neural networks via intermittent event-triggered control, Neural Networks, 2021, 141: 98–106.

    Article  PubMed  Google Scholar 

  24. Yang S, Guo Z, and Wang J, Robust synchronization of multiple memristive neural networks with uncertain parameters via nonlinear coupling, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(7): 1077–1086.

    Article  Google Scholar 

  25. Yao W, Wang C, Sun Y, et al., Robust multimode function synchronization of memristive neural networks with parameter perturbations and time-varying delays, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(1): 260–274.

    Article  Google Scholar 

  26. Yan S, Nguang S K, and Gu Z, H weighted integral event-triggered synchronization of neural networks with mixed delays, IEEE Transactions on Industrial Informatics, 2020, 17(4): 2365–2375.

    Article  Google Scholar 

  27. Wang J L, Wu H Y, Huang T, et al., Finite-time synchronization and H synchronization for coupled neural networks with multistate or multiderivative couplings, IEEE Transactions on Neural Networks and Learning Systems, 2022, DOI: https://doi.org/10.1109/TNNLS.2022.3184487.

  28. Huang Y and Wu F, Finite-time passivity and synchronization of coupled complex-valued memristive neural networks, Information Sciences, 2021, 580: 775–800.

    Article  MathSciNet  Google Scholar 

  29. Meng B and Zhao Y, The dynamics characteristics of flexible spacecraft and its closed-loop stability with passive control, Journal of Systems Science & Complexity, 2021, 34(3): 860–872.

    Article  MathSciNet  Google Scholar 

  30. Wang S, Cao Y, Huang T, et al., Passivity and passification of memristive neural networks with leakage term and time-varying delays, Applied Mathematics and Computation, 2019, 361: 294–310.

    Article  MathSciNet  Google Scholar 

  31. Yang X, Cao J, and Liang J, Exponential synchronization of memristive neural networks with delays: Interval matrix method, IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8): 1878–1888.

    Article  MathSciNet  PubMed  Google Scholar 

  32. Zeng H B, He Y, Wu M, et al., New results on stability analysis for systems with discrete distributed delay, Automatica, 2015, 60: 189–192.

    Article  MathSciNet  Google Scholar 

  33. Liu K, Seuret A, and Xia Y, Stability analysis of systems with time-varying delays via the second-order Bessel-Legendre inequality, Automatica, 2017, 76: 138–142.

    Article  MathSciNet  Google Scholar 

  34. Xie L, Fu M, de Souza C E, et al., H control and quadratic stabilization of systems with parameter uncertainty via output feedback, IEEE Transactions on Automatic Control, 1992, 37(8): 1253–1256.

    Article  MathSciNet  Google Scholar 

  35. Zhou J P, Park J H, and Ma Q, Non-fragile observer-based H control for stochastic time-delay systems, Applied Mathematics and Computation, 2016, 291: 69–83.

    Article  MathSciNet  Google Scholar 

  36. Hua C, Ge C, and Guan X, Synchronization of chaotic Lur’e systems with time delays using sampled-data control, IEEE Transaction on Neural Network Learning System, 2014, 26: 1214–1221.

    MathSciNet  Google Scholar 

  37. Selivanov A and Fridman E, Event-triggered \(\cal{H}_{\infty}\) control: A switching approach, IEEE Transaction on Automatic Control, 2016, 61: 3221–3226.

    Article  MathSciNet  Google Scholar 

  38. Wu W H, He L, Zhou J P, et al., Disturbance-term-based switching event-triggered synchronization control of chaotic Lurie systems subject to a joint performance guarantee, Communication in Nonlinear Science Numerical Simulation, 2022, 115: 106774.

    Article  MathSciNet  Google Scholar 

  39. Zhou J, Chen T, and Xiang L, Robust synchronization of delayed neural networks based on adaptive control and parameters identification, Chaos, Solitons & Fractals, 2006, 27(4): 905–913.

    Article  ADS  MathSciNet  Google Scholar 

  40. Lou X and Cui B, Synchronization of neural networks based on parameter identification and via output or state coupling, Journal of Computational and Applied Mathematics, 2008, 222(2): 440–457.

    Article  ADS  MathSciNet  Google Scholar 

  41. Cao Q, Wang R, Zhang T, et al., Hydrodynamic modeling and parameter identification of a bionic underwater vehicle: RobDact, Cyborg and Bionic Systems, 2022, 2022: 9806328.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peng Y, He S, and Sun K, Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm, Nonlinear Dynamics, 2022, 107: 1263–1275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lulu Guo.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported in part by the National Natural Science Foundation of China under Grant No. 62203334, Shanghai Rising-Star Program under Grant No. 22YF1451300, and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Guo, L. & Chen, H. Mixed H/Passive Exponential Synchronization for Delayed Memristive Neural Networks with Switching Event-Triggered Control. J Syst Sci Complex 37, 294–317 (2024). https://doi.org/10.1007/s11424-024-3435-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-024-3435-2

Keywords

Navigation