Skip to main content
Log in

Response compaction for system-on-a-chip based on advanced convolutional codes

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper addresses the problem of test response compaction. In order to maximize compaction ratio, a single-output compactor based on a (n, n−1, m, 3) convolutional code is presented. When the proposed theorems are satisfied, the compactor can avoid two and any odd erroneous bits cancellations, and handle one unknown bit (X bit). When the X bits in response are clustered, multiple-weight check matrix design algorithm can be used to reduce the effect of massive X bits. Some extended experimental results show that the proposed encoder has an acceptable-level X tolerant capacity and low error cancellations probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors (ITRS), 1999.

  2. Xiang, D., Gu, S., Sun, J., Wu, Y., A cost-effective scan architecture for scan testing with non-scan test power and test application cost, in Proc. of Design Automation Conference, New Orleans: ACM Press, 2003, 744–747.

    Google Scholar 

  3. Ivanov, A., Tsuji, B., Zorian, Y., Programmable space compactors for BIST, IEEE Transactions on Computers, 1996, 45(12): 1393–1405.

    Article  MATH  Google Scholar 

  4. Chakrabarty, K., Murray, B. T., Hays, J. P., Optimal zero-aliasing space compaction of test responses, IEEE Transactions on Computers, 1998, 47(11): 1171–1187.

    Article  Google Scholar 

  5. Bhattacharya, B. B., Dmitriev, A., Goessel, M., Zero-aliasing space compaction of test responses using a single periodic output, IEEE Transactions on Computers, 2003, 52(12): 1646–1651.

    Article  Google Scholar 

  6. Wohl, P., Waicukauski, J. A., Williams, T. W., Design of compactors for signature-analyzers in built-in self-test, in Proc. of International Test Conference, Baltimore: IEEE Press, 2001, 54–63.

    Google Scholar 

  7. Barnhart, C., Brunkhorst, V., Distler, F. et al., Extending OPMISR beyond 10x scan test efficiency, IEEE Design & Test of Computers, 2002, 19(5): 65–73.

    Article  Google Scholar 

  8. Wohl, P., Huisman, L., Analysis and design of optimal combinational compactors, in Proc. of VLSI Test Symposium, Napa Valley: IEEE Press, 2003, 101–106.

    Google Scholar 

  9. Saluja, K. K., Karpovsky, M., Testing computer hardware through data compression in space and time, in Proc. of International Test Conference, Philadelphia: IEEE Press, 1983, 83–88.

    Google Scholar 

  10. Mitra, S., Kim, K. S., X-Compact: An Efficient Response Compaction Technique, IEEE Transactions on Computer-Aided Design of Integrated Circuit and System, 2004, 23(3): 421–432.

    Article  Google Scholar 

  11. Patel, J. H., Lumetta, S. S., Reddy, S. M., Application of Saluja-Karpovsky compactors to test responses with many unknowns, in Proc. of VLSI Test Symposium, Napa Valley: IEEE Press, 2003, 107–112.

    Google Scholar 

  12. Lumetta, S. S., Mitra, S., X-codes: Error control with unknowable inputs, in Proc. of International Symposium on Information Theory, Pacifico: IEEE Press, 2003, 102.

    Chapter  Google Scholar 

  13. Wang, C., Reddy, S. M., Pomeranz, I. et al., On compacting test response data containing unknown values, in Proc. of International Conference on Computer-Aided Design, San Jose: IEEE Press, 2003, 855–862.

    Google Scholar 

  14. Pomeranz, I., Kundu, I. S., Reddy, S. M., On output response compression in the presence of unknown output values, in Proc. of Design Automation Conference, New Orleans: IEEE Press, 2002, 255–258.

    Google Scholar 

  15. Rajski, J., Tyszer, J., Wang, C., Reddy, S. M., Convolutional compaction of test responses, in Proc. of International Test Conference, Charlotte: IEEE Press, 2003, 745–754.

    Google Scholar 

  16. Han, Y., Xu, Y., Li, H. et al., Test resource partitioning based on efficient responses compaction for test time and tester channels reduction, in Proceedings of Asian Test Symposium, Xi’an: IEEE Press, 2003, 440–445.

    Google Scholar 

  17. Elias, P., Coding for Noisy Channels, IRE Internsational Convention Record, 1955, 37–46.

  18. Forney, G. D., Convolutional codes I: Algebraic Structure, IEEE Transactions on Information Theory, 1970, 16: 720–738.

    Article  MATH  MathSciNet  Google Scholar 

  19. Luerssen, H. G., Schmale, W., Distance bounds for convolutional codes and some optimal codes, in the Report available at http://www.uni-oldenburg.de/math/personen/gluesing/OptCodes.pdf.

  20. Brualdi, R. A., Introductory Combinatorics, 3rd ed., New Jersey, Pearson Education, Inc, 1999.

    MATH  Google Scholar 

  21. Lee, H. K., Ha, D. S., HOPE: An efficient parallel fault simulator for synchronous sequential circuits, in Proc. of Design Automation Conference, Anaheim: IEEE Press, 1992, 336–340.

    Google Scholar 

  22. Hamzaoglu, I., Patel, J. H., Test set compaction algorithms for combinational circuits, in Proc. of IEEE International Conference on Computer-Aided Design, San Jose: IEEE Press, 1998, 283–289.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Yinhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Li, H., Li, X. et al. Response compaction for system-on-a-chip based on advanced convolutional codes. SCI CHINA SER F 49, 262–272 (2006). https://doi.org/10.1007/s11432-006-0262-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-006-0262-0

Keywords

Navigation