Skip to main content
Log in

Provably secure robust threshold partial blind signature

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Threshold digital signature and blind signature are playing important roles in cryptography as well as in practical applications such as e-cash and e-voting systems. Over the past few years, many cryptographic researchers have made considerable headway in this field. However, to our knowledge, most of existing threshold blind signature schemes are based on the discrete logarithm problem. In this paper, we propose a new robust threshold partial blind signature scheme based on improved RSA cryptosystem. This scheme is the first threshold partial blind signature scheme based on factoring, and the robustness of threshold partial blind signature is also introduced. Moreover, in practical application, the proposed scheme will be especially suitable for blind signature-based voting systems with multiple administrators and secure electronic cash systems to prevent their abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaum D. Blind signatures for untraceable electronic cash. Advances in Cryptology-CRYPTO’82, 1983, 199–203

  2. Chaum D, Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 1981, 24: 84–88

    Article  Google Scholar 

  3. Chaum D, Fiat A, Naor M. Untraceable electronic cash. Advances in Cryptology-CRYPTO’88, 1988, 403: 319–327

    Google Scholar 

  4. Abe M, Fujisaki E. How to date blind signatures. Advances in Cryptology-ASIACRYPT’96, 1996, 1163: 244–251

    MATH  Google Scholar 

  5. Abe M, Okamoto T. Provably secure partially blind signatures. Advances in Cryptology-CRYPTO’00, 2000, 1880: 271–286

    MATH  MathSciNet  Google Scholar 

  6. Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11): 612–613

    Article  MATH  MathSciNet  Google Scholar 

  7. Desmedt Y, Frankel Y. Threshold cryptosystems. Advances in Cryptology-CRYPTO’89, 1990, 335: 307–315

    Google Scholar 

  8. Gennaro R, Jarecki S, Krawczyk H, et al. Robust threshold DSS signatures. Advances in Cryptology-EUROCRYPTO’96, 1996, 1070: 354–371

    Google Scholar 

  9. Shoup V. Practical threshold signatures. Advances in Cryptology-EUROCRYPTO’00, 2000, 1807: 207–220

    MATH  Google Scholar 

  10. Jarecki S, Lysyanskaya A. Adaptively secure threhold cryptography. Advances in Cryptology-EUROCRYPTO’00, 2000, 1807: 221–242

    MATH  Google Scholar 

  11. Juang W S, Lei C L. Blind threshold signatures based on discrete logarithm. Proceedings of the 2nd Asian Computing Science Conference, 1996, 1179: 172–181

    Google Scholar 

  12. Juang W S, Lei C L, Yu P L. Provably secure blind threshold signatures based on discrete logarithm. Proceedings of 1999 National Computer Symposium, 1999, 198–205

  13. Schnorr C P. Efficient identification and signatures for smart cards. Advances in Cryptology-CRYPTO’89, 1990, 435: 235–251

    MathSciNet  Google Scholar 

  14. Okamoto T. Provably secure and practical identification schemes and corresponding signature schemes. Advances in Cryptology-CRYPTO’92, 1992, 740: 31–53

    MathSciNet  Google Scholar 

  15. Kim J, Kim K, Lee C. An efficient and provably secure threshold blind signature. International Conference on Information Security and Cryptology-ICISC’01, 2002, 2288: 318–327

    MATH  Google Scholar 

  16. Vo D L, Zhang F, Kim K. A new threshold blind signature scheme from pairings. Symposium on Cryptography and Information Security-SCIS’03, 2003, 1(2): 233–238

    Google Scholar 

  17. Stinson D R, Strobl R. Provably secure distributed Schnorr signatures and a (t, n) threshold scheme for implicit certificates. Information Security and Privacy-ACISP’01, 2001, 2119: 417–434

    MATH  Google Scholar 

  18. Cao Z F. A threshold key escrow scheme based on public key cryptosystem, Sci China Ser E-Tech Sci, 2001, 44(4): 441–448

    Article  Google Scholar 

  19. Cao Z F. Two classes of robust threshold key escrow schemes. Journal of Software, 2003, 14(6): 1164–1171

    MATH  Google Scholar 

  20. Boneh D, Venkatesan R. Breaking RSA may not be equilvalent to factoring. Advances in Cryptology-EUROCRYPTO’98, 1998, 1402: 59–71

    MathSciNet  Google Scholar 

  21. Lu R X, Cao Z F, Zhu H J. A robust (k, n) + 1 threshold proxy signature scheme based on factoring. Applied Mathematics and Computation, 2005, 166(1): 35–45

    Article  MATH  MathSciNet  Google Scholar 

  22. Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 1978, 21: 120–126

    Article  MATH  MathSciNet  Google Scholar 

  23. Bellare M, Rogaway P. Optimal asymmetric encryption-how to encrypt with RSA. Advances in Cryptology-EUROCRYPTO’94, 1994, 950: 92–111

    MathSciNet  Google Scholar 

  24. Cao Z F. The multi-dimension RSA and its low exponent security. Sci China Ser E-Tech Sci, 2000, 43(4): 349–354

    MATH  Google Scholar 

  25. Cao Z F. On the security of the RSA based on a polynomial over finite fields F p and a new analog of the RSA. Journal of China Institute of Communications, 1999, 20(6): 15–18

    Google Scholar 

  26. Lu R X, Cao Z F. Efficient remote user authentication scheme using smart card. Computer Networks, 2005, 49(4): 535–540

    Article  MATH  Google Scholar 

  27. Goldwasser S, Micali S, Rivest R. A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal of computing, 1988, 17(2): 281–308

    Article  MATH  MathSciNet  Google Scholar 

  28. Coron J. On the exact security of full domain hash, Advances in Cryptology-CRYPTO’00, 2000, 1880: 229–235

    MATH  MathSciNet  Google Scholar 

  29. Bellare M, Rogaway P. Random oracles are practical: a paradigm for designing efficient protocols. Proceedings of the 1st Computer & Communication Security, 1993, 62–73

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Zhenfu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Z., Zhu, H. & Lu, R. Provably secure robust threshold partial blind signature. SCI CHINA SER F 49, 604–615 (2006). https://doi.org/10.1007/s11432-006-2013-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-006-2013-7

Keywords