Skip to main content
Log in

On Hamiltonian realization of time-varying nonlinear systems

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates Hamiltonian realization of time-varying nonlinear (TVN) systems, and proposes a number of new methods for the problem. It is shown that every smooth TVN system can be expressed as a generalized Hamiltonian system if the origin is the equilibrium of the system. If the Jacobian matrix of a TVN system is nonsingular, the system has a generalized Hamiltonian realization whose structural matrix and Hamiltonian function are given explicitly. For the case that the Jacobian matrix is singular, this paper provides a constructive decomposition method, and then proves that a TVN system has a generalized Hamiltonian realization if its Jacobian matrix has a non-singular main diagonal block. Furthermore, some sufficient (necessary and sufficient) conditions for dissipative Hamiltonian realization of TVN systems are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge S S, Lee T H, Harris C J. Adaptive Neural Network Control of Robotic Manipulators. London: World Scientific, 1998

    Google Scholar 

  2. Ge S S, Lee T H, Zhu G. Improved regulation of a single-link flexible manipulator with strain feedback, IEEE Trans Robot Autom, 1998, 14(1): 179–185

    Article  Google Scholar 

  3. Fossen T I. Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Trondheim (Norway): Marine Cybernetics AS, 2002

    Google Scholar 

  4. Slotine J E, Li W. Applied Nonlinear Control. New Jersey: Prentice Hall, 1991

    MATH  Google Scholar 

  5. Bullo F. Averaging and vibrational control of mechanical systems. SIAM J Contr Optim, 2003, 41(2): 542–562

    Article  MathSciNet  Google Scholar 

  6. Escobar G, van der Schaft A J, Ortega R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica, 1999, 35(3): 445–452

    Article  MATH  MathSciNet  Google Scholar 

  7. van der Schaft A J, Maschke B M. The Hamiltonian formulation of energy conserving physical systems with external ports. Archive für Elektronik und Übertragungstechnik, 1995, 49: 362–371

    Google Scholar 

  8. Maschke B M, van der Schaft A J. Port-controlled Hamiltonian systems: modeling origins and system theoretic properties. In: Proceedings of the IFAC Symposium on NOLCOS, Bordeaux, France, 1992. 282–288

  9. Maschke B M, Ortega R, van der Schaft A J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Contr, 2000, 45(8): 1498–1502

    Article  MATH  Google Scholar 

  10. Dalsmo M, van der Schaft A J. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J Contr Optim, 1999, 37(1): 54–91

    Article  MATH  Google Scholar 

  11. Ortega R, van der Schaft A J, Maschke B M, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38(4): 585–596

    Article  MATH  MathSciNet  Google Scholar 

  12. Fujimoto K, Sakurama K, Sugie T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica, 2003, 39(12): 2059–2069

    Article  MATH  MathSciNet  Google Scholar 

  13. Sun Y Z, Shen T L, Ortega R, et al. Decentralized controller design for multimachine power systems on Hamiltonian structure. In: Proc. of the 40th IEEE Conference on Decision and Control, Orlando, 2001

  14. Xi Z R, Cheng D Z, Lu Q, et al. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method, Automatica, 2002, 38(3): 527–534

    Article  MATH  Google Scholar 

  15. Wang Y Z, Cheng D Z, Li C W, et al. Dissipative Hamiltonian realization and energy-based L 2-disturbance attenuation control of multimachine power systems. IEEE Trans Autom Contr, 2003, 48(8): 1428–1433

    Article  MathSciNet  Google Scholar 

  16. Wang Y Z, Feng G, Cheng D Z, et al. Adaptive L 2 disturbance attenuation control of multi-machine power systems with SMES units. Automatica, 2006, 42(7): 1121–1132

    Article  MATH  MathSciNet  Google Scholar 

  17. Cheng D Z, Spurgeon S, Xiang J P. On the development of generalized Hamiltonian realizations. Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000, 5: 5125–5130

    Google Scholar 

  18. Wang Y Z, Li C W, Cheng D Z. New approaches to generalized Hamiltonian realization of nonlinear systems. Sci China, Ser F-Inf Sci, 2003, 46(6): 431–444

    Article  MathSciNet  Google Scholar 

  19. Wang Y Z, Li C W, Cheng D Z. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39(8): 1437–1443

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang Y Z, Cheng D Z, Hu X M. Problems on time-varying Hamiltonian systems: geometric structure and dissipative Hamiltonian realization. Automatica, 2005, 41(5): 717–723

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang YuZhen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60474001), the Research Fund of the Doctoral Program of Chinese Higher Education (Grant No. 20040422059), and the Natural Science Foundation of Shandong Province (Grant No. Y2006G10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ge, S.S. & Cheng, D. On Hamiltonian realization of time-varying nonlinear systems. SCI CHINA SER F 50, 671–685 (2007). https://doi.org/10.1007/s11432-007-0041-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-007-0041-6

Keywords

Navigation