Skip to main content
Log in

Theory and application of stability for stochastic reaction diffusion systems

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

So far, the Lyapunov direct method is still the most effective technique in the study of stability for ordinary differential equations and stochastic differential equations. Due to the shortage of the corresponding Itô formula, this useful method has not been popularized in stochastic partial differential equations. The aim of this work is to try to extend the Lyapunov direct method to the Itô stochastic reaction diffusion systems and to establish the corresponding Lyapunov stability theory, including stability in probablity, asymptotic stability in probability, and exponential stability in mean square. As the application of the obtained theorems, this paper addresses the stability of the Hopfield neural network and points out that the main results obtained by Holden Helge and Liao Xiaoxin et al. can be all regarded as the corollaries of the theorems presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachelier L. Théorie de la speculation. Ann Sci Ecole Norm, 1900, 17: 21–86

    MathSciNet  Google Scholar 

  2. Itô K. On stochastic differential equations. Mem Amer Math Soc, 1951, 4

  3. Kac I J, Krasovskii N N. On stability of systems with random parameters. J Appl Mach Mech, 1960, 24: 1225–1246

    Google Scholar 

  4. Has’minskii R Z. On the stability of trajectory of Markov processes. J Appl Mach Mech, 1962, 26: 1554–1565

    MathSciNet  Google Scholar 

  5. Has’minskii R Z. Stochastic Stability of Differential Equations. Sijthoff and Noordoff, Alphen aan den Rijn, 1981

  6. Friedman A. Stochastic Differential Equations and Applications. Academic Press, Vol.1, 1975

  7. Mao X. Exponential Stability of Stochastic Differential Equations. New York: Marcel Dekker, 1994

    MATH  Google Scholar 

  8. Liao X X. Theory and Application of Stability for Dynamical Systems. Beijing: Defense Industry Press, 2000

    MATH  Google Scholar 

  9. Holden H. Stochastic Partial Differential Equations — A Modeling White Noise Functional Analysis Approach. Boston: Birkhauser, 1996

    Google Scholar 

  10. István Gyöngy, Carles Rovira. On L p-solutions of semilinear stochastic partial differential equations. Stoch Proc Their Appl, 2000, 90: 83–108

    Article  MATH  Google Scholar 

  11. Alòs E, Bonaccorsi S. Stochastic partial differential equations with Dirichlet white-noise boundary conditions. Ann I H Poincaré-PR38, 2002, 2: 125–154

    Article  Google Scholar 

  12. Dozzi M, Maslowski B. Non-explosion of solutions to stochastic reaction-diffusion equations, ZAMM _ Z. Angew Math Mech, 2002, 82: 11–12, 745–751

    MathSciNet  Google Scholar 

  13. Zhang X C. Quasi-sure limit theorem of parabolic stochastic partial differential equations. Acta Math Sin, 2004, 20(4): 719–730

    Article  MATH  MathSciNet  Google Scholar 

  14. Pardouxa E, Piatnitskib A L. Homogenization of a nonlinear random parabolic partial differential equation. Stoch Proc Their Appl, 2003, 104: 1–27

    Article  Google Scholar 

  15. Debbi L, Dozzi M. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch Proc Their Appl, 2005, 15: 1764–1781

    Article  MathSciNet  Google Scholar 

  16. Nualart D, Vuillermot P-A. Variational solutions for a class of fractional stochastic partial Dofferential equations. C R Acad Sci Paris, 2005, 340: 281–286

    MATH  MathSciNet  Google Scholar 

  17. Nualart D, Vuillermo P-A. Variational solutions for partial differential equations driven by a fractional noise. J Funct Anal, 2005, 232: 390–454

    Article  Google Scholar 

  18. Duncan T E, Maslowski B, Pasik-Duncan B. Some properties of linear stochastic distributed parameter systems with fractional Brownian motion. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida USA, December 2001, 808–812

  19. Duncan T E, Pasik-duncan B. Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch Dyn, 2002, 2(2): 225–250

    Article  MATH  MathSciNet  Google Scholar 

  20. Dalang R C, Sanz-Solé M. Regularity of the samples paths of a class of second-order SPDE’s. J Funct Anal, 2005, 227: 304–337

    Article  MATH  MathSciNet  Google Scholar 

  21. Dong Y, Han Q L. Delay-dependent exponential stability of stochastic systems with time-varying delays, nonlinearities and Markovian jump parameters. IEEE Trans Automat Contr, 2005, 50(2): 217–222

    Article  Google Scholar 

  22. Dong Y, Won S. Delay-dependent robust stability of stochastic systems with time delay and nonlinear uncertainties. Elect Lett (IEE), 2001, 37(15): 992–993

    Article  Google Scholar 

  23. Sigurd Assinga, Ralf Mantheyb. Invariant Measures for Stochastic Heat Equations with Unbounded Coefficients. Stochastic Processes and their Applications, 2003, 103: 237–256

    Article  MathSciNet  Google Scholar 

  24. Cerrai S, Röckner M. Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann I H Poincaré-PR, 2005, 41: 69–105

    Article  MATH  Google Scholar 

  25. Buckdahn R, Ma J. Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part I. Stoch Proc Their Appl, 2001, 93: 181–204

    Article  MATH  MathSciNet  Google Scholar 

  26. Bally V, Saussereau B. A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs. J Funct Anal, 2004, 210: 465–515

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang Q M, Zhang W G, Nie Z K. Convergence of the Euler scheme for stochastic functional partial differential equations. Appl Math Comp, 2004, 155: 479–492

    Article  MATH  MathSciNet  Google Scholar 

  28. Goldys B, Maslowski B. Exponential ergodicity for stochastic burgers and 2D Navier-Stokes equations. J Funct Anal, 2005, 226: 230–255

    Article  MATH  MathSciNet  Google Scholar 

  29. Gradinaru M, Nourdin I, Tindel S. Itô’s and Tanaka’s-type formulate for the stochastic heat equation: The linear case. J Funct Anal, 2005, 228: 114–143

    Article  MATH  MathSciNet  Google Scholar 

  30. Badri Narayanan V A, Zabaras N. Variational multiscale stabilized FEM formulations for transport equations: Stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations. J Comp Phys, 2005, 202: 94–133

    Article  MATH  Google Scholar 

  31. Dauer J P, Mahmudov N I, Matar M M. Approximate controllability of backward stochastic evolution equations in Hilbert spaces. J Math Anal Appl, 2006, 323: 42–56

    Article  MATH  MathSciNet  Google Scholar 

  32. Donati-Martin C, Pardoux E. White noise driven SPDEs with reaction. IEEE Trans Autom Contr, 1993, 95: 1–24

    MATH  MathSciNet  Google Scholar 

  33. Kotelenez P. Comparison methods for a class of function valued stochastic partial differential equations. Probab Theory Related Fields, 1992, 93: 1–19

    Article  MATH  MathSciNet  Google Scholar 

  34. Mueller C. On the support of solutions to the heat equation with noise. Stochastics, 1991, 37: 225–245

    MATH  MathSciNet  Google Scholar 

  35. Shiga T. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Can J Math, 1994, 46(2): 415–437

    MATH  MathSciNet  Google Scholar 

  36. Assing S. Comparison of systems of stochastic partial differential equations. Stoch Proc Their Appl, 1999, 82: 259–282

    Article  MATH  MathSciNet  Google Scholar 

  37. Curtain R F. Stochastic differential equation in Hilbert space. J Diff Eq, 1971, 10: 412–430

    Article  MATH  MathSciNet  Google Scholar 

  38. Haussmann U G. Asymptotic stability of the linear Itô equation in infinite dimension. J Math Anal Appl, 1978, 65: 219–235

    Article  MATH  MathSciNet  Google Scholar 

  39. Chow P L. Stability of nonlinear stochastic evolution equations. J Math Anal Appl, 1982, 89: 400–419

    Article  MATH  MathSciNet  Google Scholar 

  40. Itô K. Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. CBMS Notes. Vol. 47. Baton Rouge: SIAM, 1984

    Google Scholar 

  41. Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications. Vol. 44. Cambridge: Cambridge University Press, 1992

    Google Scholar 

  42. Luo Q, Deng F Q, Bao J D, et al. Stabilization of stochastic Hopfield neural network with distributed parameters. Sci China Ser F-Inf Sci, 2004, 47(6): 752–762

    Article  MATH  MathSciNet  Google Scholar 

  43. Hopfield J J. Neural networks and physical systems with emergent collect computational abilities. Proc Natl Acad Sci USA, 1982, 79: 2554–2558

    Article  MathSciNet  Google Scholar 

  44. Hopfield J J, Tank D W. Computing with neural circuits: a model. Science, 1986, 233: 625–633

    Article  Google Scholar 

  45. Liao X X. Mathematical theory of cell neural network (II). Sci China Ser A, 1995, 38(5): 542–551

    MATH  MathSciNet  Google Scholar 

  46. Liang X B, Wu L D. Globally exponential stability of Hopfield neural network and its application. Sci China Ser A, 1995, 38(6): 757–768

    MathSciNet  Google Scholar 

  47. Liao X X, Mao X R. Stability of stochastic neural networks. Neur Paral Sci Comp, 1996, 4: 205–224

    MATH  MathSciNet  Google Scholar 

  48. Liao X X, Mao X R. Exponential stability and instability of stochastic neural networks. Stoch Anal Appl, 1996, 14(2): 165–185

    Article  MATH  MathSciNet  Google Scholar 

  49. He Q M, Kang L. Existence and stability of global solution for generalized Hopfield neural network system. Neural, Parallel & Sci Comp, 1994, 2: 165–176

    MATH  MathSciNet  Google Scholar 

  50. Liao X X, Yang S Z, Cheng S J, et al. Stability of general neural networks with reaction-diffusion. Sci China Ser F-Inf Sci, 2001, 44(5): 389–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo Qi.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60574042)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Q., Deng, F., Mao, X. et al. Theory and application of stability for stochastic reaction diffusion systems. Sci. China Ser. F-Inf. Sci. 51, 158–170 (2008). https://doi.org/10.1007/s11432-008-0020-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-008-0020-6

Keywords

Navigation