Skip to main content

Advertisement

Log in

Minimum-energy wavelet frame on the interval

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

The construction and properties of interval minimum-energy wavelet frame are systematically studied in this paper. They are as follows: 1) give the definition of interval minimum-energy wavelet frame; 2) give the necessary and sufficient conditions for the minimum-energy frames for L 2[0,1]; 3) present the construction algorithm for minimum-energy wavelet frame associated with refinable functions on the interval with any support γ; 4) give the decomposition and reconstruction formulas of the minimum-energy frame on the interval [0,1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen A, Daubechies I, Vial P. Wavelets on the interval and fast wavelet transforms. Appl Comp Harmon Anal, 1993, 1(1): 54–81

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersson L, Hall N, Jawerth B, et al. Wavelets on closes subsets of the real line. In: Schumaker L L, Webb Geds, eds. Recent Advance in Wavelet Analysis. Boston: Academic Press, 1994. 1–61

    Google Scholar 

  3. Han B, Jiang Q T. Multiwavelets on the interval. Appl Comp Harmon Anal, 2002, 12(12): 100–127

    Article  MATH  MathSciNet  Google Scholar 

  4. Gao X P, Zhou S W. A study of orthogonal, balanced and symmetric multi-wavelets on the interval. Sci Chin Ser F-Inf Sci, 2005, 48(6): 761–781

    Article  MATH  MathSciNet  Google Scholar 

  5. Chui C, He W. Compactly supported tight frames associated with refinable functions. Appl Comp Harmon Anal, 2000, 8(3): 293–319

    Article  MATH  MathSciNet  Google Scholar 

  6. Selesnick I W. Smooth wavelet tight frames with zero moments. Appl Comp Harmon Anal, 2001, 10(2): 163–181

    Article  MATH  MathSciNet  Google Scholar 

  7. Abdelnour A F, Selesnick I W. Symmetric nearly shift-invariant tight frame wavelets. IEEE Trans Sig Proc, 2005, 53(1): 231–238

    Article  MathSciNet  Google Scholar 

  8. Selesnick I W. Symmetric wavelet tight frames with two generators. Appl Comp Harmon Anal, 2004, 17(2): 211–225

    Article  MATH  MathSciNet  Google Scholar 

  9. Chui C K, He W, Stockler J. Compactly supported tight and sibling frames with maximum vanishing moments. Appl Comp Harmon Anal, 2003, 13(3): 177–283

    MathSciNet  Google Scholar 

  10. Han B. On dual wavelets tight frames. Appl Comp Harmon Anal, 1997, (4): 380–413

  11. Alexander P. Explicit construction of framelets. Appl Comp Harmon Anal, 2001, (11): 313–327

  12. Daubechies I, Han B, Ron A, et al. Framelets: MRA-based constructions of wavelet frames. Appl Comp Harmon Anal, 2003, 14(1): 1–46

    Article  MATH  MathSciNet  Google Scholar 

  13. Peng L Z, Wang H H. Construction for a class of smooth wavelet tight frames. Sci Chin Ser F-Inf Sci, 2003, 46(6): 445–458

    Article  MATH  MathSciNet  Google Scholar 

  14. Daubechies I. Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math, 1988, (41): 909–996

  15. Daubechies I, Han B. Pairs of dual wavelet frames from any two refinable functions. Constr Approx, 2004, 20(3): 325–352

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang Q. Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators. Adv Comp Math, 2003, 18: 247–268

    Article  MATH  Google Scholar 

  17. Petukhov A. Symmetric framelets. Constr Approx, 2003, 19(2): 309–328

    Article  MATH  MathSciNet  Google Scholar 

  18. Selesnick I W, S’endur L. Smooth wavelet frames with application to denoising. In: IEEE Proc Int Conf Acoust, Speech and Signal Processing, Istanbul, Turkey, 2000, (1): 129–132

  19. Grochenig K, Pon A. Tight compactly supported wavelet frames of arbitarily high smoothness. Proceeding of the Amercian Mathatical Society, 1998, 126(4): 1101–1110

    Article  Google Scholar 

  20. Lawton W, Lee S L, Shen Z W. Stability and orthonormality of multivariate refinable functions. SIAM J Math Anal, 1997, 28 (4): 999–1014

    Article  MATH  MathSciNet  Google Scholar 

  21. Bölcskei H, Hlawatsch F. Oversampled cosine modulated filter banks with perfect reconstruction. IEEE Trans Circuits Syst II, 1998, (45): 1057–1071

  22. Benedetto J J, Treiber O M. Wavelet frame: multiresolution analysis and extension principle. In: Ebnath L, ed. Wavelet Transform and Time-Frequency Signal Analysis, Birkhauser, Boston, 2000

    Google Scholar 

  23. Benedetto J J, Li S. The theory of multiresolution analysis frames and applications to filter bands. Appl Comp Harmon Anal, 1998, (5): 389–427

  24. Kim H O, Lim J K. On frame wavelets associated with frame multiresolution analysis. Appl Comp Harmon Anal, 2001, (10): 61–70

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunHong Cao.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60375021), the Natural Science Foundation of Hunan Province, China (Grant No. 05JJ10011), and the Scientific Research Fund of Hunan Provincial Education Department of China (Grant Nos. 04A056 and 06C836)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Cao, C. Minimum-energy wavelet frame on the interval. Sci. China Ser. F-Inf. Sci. 51, 1547–1562 (2008). https://doi.org/10.1007/s11432-008-0107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-008-0107-0

Keywords