Abstract
The construction and properties of interval minimum-energy wavelet frame are systematically studied in this paper. They are as follows: 1) give the definition of interval minimum-energy wavelet frame; 2) give the necessary and sufficient conditions for the minimum-energy frames for L 2[0,1]; 3) present the construction algorithm for minimum-energy wavelet frame associated with refinable functions on the interval with any support γ; 4) give the decomposition and reconstruction formulas of the minimum-energy frame on the interval [0,1].
Similar content being viewed by others
References
Cohen A, Daubechies I, Vial P. Wavelets on the interval and fast wavelet transforms. Appl Comp Harmon Anal, 1993, 1(1): 54–81
Andersson L, Hall N, Jawerth B, et al. Wavelets on closes subsets of the real line. In: Schumaker L L, Webb Geds, eds. Recent Advance in Wavelet Analysis. Boston: Academic Press, 1994. 1–61
Han B, Jiang Q T. Multiwavelets on the interval. Appl Comp Harmon Anal, 2002, 12(12): 100–127
Gao X P, Zhou S W. A study of orthogonal, balanced and symmetric multi-wavelets on the interval. Sci Chin Ser F-Inf Sci, 2005, 48(6): 761–781
Chui C, He W. Compactly supported tight frames associated with refinable functions. Appl Comp Harmon Anal, 2000, 8(3): 293–319
Selesnick I W. Smooth wavelet tight frames with zero moments. Appl Comp Harmon Anal, 2001, 10(2): 163–181
Abdelnour A F, Selesnick I W. Symmetric nearly shift-invariant tight frame wavelets. IEEE Trans Sig Proc, 2005, 53(1): 231–238
Selesnick I W. Symmetric wavelet tight frames with two generators. Appl Comp Harmon Anal, 2004, 17(2): 211–225
Chui C K, He W, Stockler J. Compactly supported tight and sibling frames with maximum vanishing moments. Appl Comp Harmon Anal, 2003, 13(3): 177–283
Han B. On dual wavelets tight frames. Appl Comp Harmon Anal, 1997, (4): 380–413
Alexander P. Explicit construction of framelets. Appl Comp Harmon Anal, 2001, (11): 313–327
Daubechies I, Han B, Ron A, et al. Framelets: MRA-based constructions of wavelet frames. Appl Comp Harmon Anal, 2003, 14(1): 1–46
Peng L Z, Wang H H. Construction for a class of smooth wavelet tight frames. Sci Chin Ser F-Inf Sci, 2003, 46(6): 445–458
Daubechies I. Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math, 1988, (41): 909–996
Daubechies I, Han B. Pairs of dual wavelet frames from any two refinable functions. Constr Approx, 2004, 20(3): 325–352
Jiang Q. Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators. Adv Comp Math, 2003, 18: 247–268
Petukhov A. Symmetric framelets. Constr Approx, 2003, 19(2): 309–328
Selesnick I W, S’endur L. Smooth wavelet frames with application to denoising. In: IEEE Proc Int Conf Acoust, Speech and Signal Processing, Istanbul, Turkey, 2000, (1): 129–132
Grochenig K, Pon A. Tight compactly supported wavelet frames of arbitarily high smoothness. Proceeding of the Amercian Mathatical Society, 1998, 126(4): 1101–1110
Lawton W, Lee S L, Shen Z W. Stability and orthonormality of multivariate refinable functions. SIAM J Math Anal, 1997, 28 (4): 999–1014
Bölcskei H, Hlawatsch F. Oversampled cosine modulated filter banks with perfect reconstruction. IEEE Trans Circuits Syst II, 1998, (45): 1057–1071
Benedetto J J, Treiber O M. Wavelet frame: multiresolution analysis and extension principle. In: Ebnath L, ed. Wavelet Transform and Time-Frequency Signal Analysis, Birkhauser, Boston, 2000
Benedetto J J, Li S. The theory of multiresolution analysis frames and applications to filter bands. Appl Comp Harmon Anal, 1998, (5): 389–427
Kim H O, Lim J K. On frame wavelets associated with frame multiresolution analysis. Appl Comp Harmon Anal, 2001, (10): 61–70
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (Grant No. 60375021), the Natural Science Foundation of Hunan Province, China (Grant No. 05JJ10011), and the Scientific Research Fund of Hunan Provincial Education Department of China (Grant Nos. 04A056 and 06C836)
Rights and permissions
About this article
Cite this article
Gao, X., Cao, C. Minimum-energy wavelet frame on the interval. Sci. China Ser. F-Inf. Sci. 51, 1547–1562 (2008). https://doi.org/10.1007/s11432-008-0107-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-008-0107-0