Skip to main content
Log in

Accurate evaluation of Green’s functions in a layered medium by SDP-FLAM

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Based on local Taylor expansions on the complex plane, a method for fast locating all modes (FLAM) of spectral-domain Green’s Functions in a planar layered medium is developed in this paper. SDP-FLAM, a combination of FLAM with the steepest descent path algorithm (SDP), is employed to accurately evaluate the spatial-domain Green’s functions in a layered medium. According to the theory of complex analysis, the relationship among the poles, branch points and Riemann sheets is also analyzed rigorously. To inverse the Green’s functions from spectral to spatial domain, SDP-FLAM method and discrete complex image method (DCIM) are applied to the non-near field region and the near filed region, respectively. The significant advantage of SDP-FLAM lies in its capability of calculating Green’s functions in a layered medium of moderate thickness with loss or without loss. Some numerical examples are presented to validate SDP-FLAM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sommerfeld A. Propagation of waves in wireless telegraphy. Ann Phys, 1909, 28:665–736

    Article  Google Scholar 

  2. Kong J A. Electromagnetic Wave Theory. New York: Wiley, 1981

    Google Scholar 

  3. Chew W C. Waves and Fields in Inhomogeneous Media. New York: Van Nostrand, 1990

    Google Scholar 

  4. Lindell I V, Alanen E. Exact image theory for the Sommerfeld half space problem, Pt. 3: general formulation. IEEE Trans Antennas Propag, 1984, 32(10): 1027–1032

    Article  Google Scholar 

  5. Fang D G, Yang J J, Delisle G Y. Discrete image theory for horizontal electric dipoles in a multilayered medium. IEE Proc H, 1988, 135(5):297–303

    Google Scholar 

  6. Chow Y L, Yang J J, Fang D G, et al. A closed-form spatial Green’s function for the thick microstrip substrate. IEEE Trans Microwave Theory Tech, 1991, 39:588–592

    Article  Google Scholar 

  7. Kipp R A, Chan C H. Complex image method for sources in bounded regions of multilayer structures. IEEE Trans Microwave Theory Tech, 1994, 42:860–865

    Article  Google Scholar 

  8. Dural G, Aksun M I. Closed-form Green’s functions for general sources and stratified media. IEEE Trans Microwave Theory Tech, 1995, 43:1545–1551

    Article  Google Scholar 

  9. Hua Y, Sakar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans Antennas Propagat, 1995, 37:229–234

    Article  Google Scholar 

  10. Aksun M I. A robust approach for the derivation of closedform Greens functions. IEEE Trans Microwave Theory Tech, 1996, 44:651–658

    Article  Google Scholar 

  11. Kinayman N, Aksun M I. Efficient use of closed-form Green’s functions for the analysis of planar geometries with vertical connections. IEEE Trans Microwave Theory Tech, 1997, 45:8 593–603

    Google Scholar 

  12. Michalsky K A, Mosig J R. Multilayered media Greens functions in integral equation formulations. IEEE Trans Microwave Theory Tech, 1997, 45:508–519

    Google Scholar 

  13. Cui T J, Chew W C. Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three dimension buried objects. IEEE Trans Geosci Remote Sens, 1999, 37:887–900

    Article  Google Scholar 

  14. Ling F. Fast electromagnetic modeling of multilayer microstrip antennas and circuits. Ph. D. Thesis in Elect. Eng. Urbana-Champaign: Illinois Univ., 2000

    Google Scholar 

  15. Ling F, Jin J M. Discrete complex image method for Greens functions of general multilayer media. IEEE Trans Microw Guided Wave Lett, 2000, 10:400–402

    Article  Google Scholar 

  16. Ling F, Liu J, Jin J M. Efficient electromagnetic modeling of three-dimensional multilayer microstrip antennas and circuits. IEEE Trans Microwave Theory Tech, 2002, 50:1628–1635

    Article  Google Scholar 

  17. Ling F, Okhmatovski V, Song B, et al. Systematic extraction of static images from layered Media Green’s function for accurate DCIM implementation. IEEE Antennas Wireless Propag Lett, 2007, 6:215–218

    Article  Google Scholar 

  18. Liu Y, Li L W, Yeo T S, et al. Application of DCIM to MPIE-MoM analysis of 3-D PEC objects in multilayered media. IEEE Trans Antennas Propag, 2002, 50:157–162

    Article  Google Scholar 

  19. Liu Y, Li L W, Yeo T S, et al. Calculation of spatial-domain Green functions for multilayered media using DCIM with automatic handling of surface wave poles. IEE Proc-Microw Antennas Propag, 2004, 151:236–240

    Article  Google Scholar 

  20. Liu E X, Li E P, Li L W. Electrical performance simulation of inhomogeneous multilayer LTCC structure by hybrid method. In: Electronics Packaging Technology Conference, 2004. 657–660

  21. Bernal J, Medina F, Boix R R, et al. Fast full-wave analysis of multistrip transmission lines based on MPIE and complex image theory. IEEE Trans Microwave Theory Tech, 2000, 48(3):445–452

    Article  Google Scholar 

  22. Simsek E, Liu Q H, Wei B. Singularity subtraction for evaluation of Green’s function for multilayer media. IEEE Trans Microwave Theory Tech, 2006, 54:216–225

    Article  Google Scholar 

  23. Simsek E, Liu J G, Liu Q H. A spectral integral method (SIM) for layered media. IEEE Trans Antennas Propag, 2006, 54:1742–1749

    Article  Google Scholar 

  24. Hsieh R C, Kuo J T. Evaluation of spatial Green’s functions for microstrips: fast Hankel transform algorithm and complex image method. Electr Lett, 1998, 34(11):1110–1111

    Article  Google Scholar 

  25. Song B, Hong W. Extraction of the surface waves and waveguide modes of the Green’s function in layered anisotropic dielectrics between two ground planes. Radio Sci, 2002, 37(4)

  26. Kourkoulos V N, Cangellaris A C. Accurate approximation of Greens functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves. IEEE Trans Antennas Propag, 2006, 54(5):1568–1576

    Article  MathSciNet  Google Scholar 

  27. King R W P. The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region. J Appl Phys, 1991, 69:7985–7995

    Google Scholar 

  28. King R W P, Sandler S S. The electromagnetic field of a vertical electric dipole in the presence of a three-layered region. Radio Sci, 1994, 29:97–113

    Article  Google Scholar 

  29. Zhang H Q, Pan W Y. Electromagnetic field of a vertical electric dipole on a perfect conductor coated with a dielectric layer. Radio Sci, 2002, 37:13-1–13-7

    Google Scholar 

  30. Li K, Lu Y. Electromagnetic field generated by a horizontal electric dipole near the surface of a planar perfect conductor coated with a uniaxial layer. IEEE Trans Antennas Propag, 2005, 53:3191–3200

    Article  MathSciNet  Google Scholar 

  31. Teo S A, Chew S T, Leong M S. Error analysis of the discrete complex image method and pole extraction. IEEE Trans Microwave Theory Tech, 2003, 51:406–413

    Article  Google Scholar 

  32. Neve M J, Paknys R. A technique for approximating the location of surface- and leaky-wave poles for a lossy dielectric slab. IEEE Trans Antennas Propag, 2006, 54(1):115–120

    Article  Google Scholar 

  33. Tsang L, Ong C J, Wu B. Electromagnetic fields of Hertzian dipoles in thin-layered media. IEEE Antennas Wireless Propag Lett, 2006, 5:537–540

    Article  Google Scholar 

  34. Tsang L, Wu B. Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes. IEEE Antennas Wireless Propag Lett, 2007, 6:316–319

    Article  Google Scholar 

  35. Wu B, Tsang L, Ong C J. Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green’s functions of moderate thickness. Microw Opt Tech Lett, 2007, 49(12):3112–3118

    Article  Google Scholar 

  36. Marin M A, Barkeshli S, Pathak P H. On the location of proper and improper surface wave poles for the grounded dielectric slab. IEEE Trans Antennas Propag, 1990, 38:570–573

    Article  MATH  MathSciNet  Google Scholar 

  37. Jackson D R, Oliner A A. A leaky-wave analysis of the highgain printed antenna configuration. IEEE Trans Antenna Propag, 1988, 36:905–910

    Article  Google Scholar 

  38. Lang S. Complex Analysis. 4th ed. New York: Spriger-Verlag, 1999

    MATH  Google Scholar 

  39. Fang D G. Antenna Theory and Microstrip Antennas (in Chinese). Beijing: Science Press, 2006

    Google Scholar 

  40. Gander W, Gautschi W. Adaptive quadrature-revisited. BIT, 2000, 40: 84–101

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Song.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60621002), and the State Key Development Program for Basic Research of China (Grant No. 2009CB320200)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Zhou, H., Hu, J. et al. Accurate evaluation of Green’s functions in a layered medium by SDP-FLAM. Sci. China Ser. F-Inf. Sci. 52, 867–875 (2009). https://doi.org/10.1007/s11432-009-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0021-0

Keywords

Navigation