Skip to main content
Log in

A method of 3D modeling and codec

  • Special Focus
  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

3D modeling and codec of real objects are hot issues in the field of virtual reality. In this paper, we propose an automatic registration two range images method and a cycle based automatic global registration algorithm for rapidly and automatically registering all range images and constructing a realistic 3D model. Besides, to meet the requirement of huge data transmission over Internet, we present a 3D mesh encoding/decoding method for encoding geometry, topology and attribute data with high compression ratio and supporting progressive transmission. The research results have already been applied successfully in digital museum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Trans Patt Anal Mach Intell, 1992, 14(2): 239–256

    Article  Google Scholar 

  2. Chen Y, Medioni G. Object modelling by registration of multiple range images. Image Vision Comput, 1992, 10(3): 145–155

    Article  Google Scholar 

  3. Horn B. Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Ame, 1987, 4: 629–642

    Article  Google Scholar 

  4. Huber D F. Automatic three-dimensional modeling from reality. Dissertation for the Doctoral Degree, Pittsburgh: Carnegie Mellon University, 2002

    Google Scholar 

  5. Gelfand N, Mitra N J, Guibas L J, et al. Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing. Aire-la-Ville: Eurographics Association Press, 2005, 255: 197–206

    Google Scholar 

  6. Li X, Guskov I. Multi-scale features for approximate alignment of point-based surfaces. In: Proceedings of the Third Eurographics Symposium on Geometry Processing. Aire-la-Ville: Eurographics Association Press, 2005. 217

    Google Scholar 

  7. Chen C S, Hung Y P, Cheng J B. Ransac-based darces: A new approach to fast auto-matic registration of partially overlapping range images. IEEE Trans Patt Anal Mach Intell, 1999, 21(11): 1229–1234

    Article  Google Scholar 

  8. Huang Q X, Flory S, Gelfand N, et al. Reassembling fractured objects by geometric matching. ACM Trans Graph, 2006, 25(3): 569–578

    Article  Google Scholar 

  9. Bergevin R, Soucy M, Gagnon H, et al. Towards a general multi-view registration technique. IEEE Trans Patt Anal Mach Intell, 1996, 18(5): 540–547

    Article  Google Scholar 

  10. Krishnan S, Lee P Y, Moore J, et al. Global registration of multiple 3D point sets via optimization-on-a-manifold. In: Proceedings of the Third Eurographics Symposium on Geometry Processing. Aire-la-Ville: Eurographics Association Press, 2005. 187–196

    Google Scholar 

  11. Deering M. Geometry compression. In: Mair S G, Cook R, eds. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH’95. New York: ACM Press, 1995. 13–20

    Chapter  Google Scholar 

  12. Taubin G, Rossignac J. Geometric compression through topological surgery. ACM Trans Graph, 1998, 17(2): 84–115

    Article  Google Scholar 

  13. Bajaj C L, Pascucci V, Zhuang G. Single resolution compression of arbitrary triangular meshes with properties. Comput Geometry: Theory Appl, 1999, 14: 167–186

    Article  MATH  MathSciNet  Google Scholar 

  14. Rossignac J. EdgeBreaker: Connectivity compression for triangle meshes. IEEE Trans Visua Comput Graph, 1999, 5(1): 47–61

    Article  Google Scholar 

  15. Touma C, Gotsman C. Triangle mesh compression. In: Proceedings of Graphics Interface. Vancouver: Canadian Human-Computer Communications Society Press, 1998. 26–34

    Google Scholar 

  16. Hoppe H. Progressive meshes. In: Proceedings of ACM SIGGRAPH, Proceedings of the 23rd Annual Conference on Computer Graphics and interactive Techniques International Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1996. 99–108

    Chapter  Google Scholar 

  17. Hoppe H. View-dependent refinement of progressive meshes. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques International Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997. 189–198

    Chapter  Google Scholar 

  18. Cohen-Or D, Mann Y, Fleishman S. Deep compression for streaming texture intensive animations. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques International Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1999. 261–267

    Chapter  Google Scholar 

  19. Alliez P, Desbrun M. Progressive encoding for lossless transmission of triangle meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics, 2001. 198–205

  20. Gandoin P M, Devillers O. Progressive lossless compression of arbitrary simplicial complexes. ACM Trans Graph, 2002, 21(3): 372–379

    Article  Google Scholar 

  21. Peng J, Kuo C C J. Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans Graph, 2005, 24(3): 609–616

    Article  Google Scholar 

  22. Karni Z, Gotsman C. Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2000. 279–286

    Chapter  Google Scholar 

  23. Gu X, Gortler S J, Hoppe H. Geometry images. ACM Trans Graph, 2002, 21(3): 355–361

    Article  Google Scholar 

  24. Lowe D G. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60(2): 91–110

    Article  Google Scholar 

  25. Lhuillier M, Quan L. Match propogation for image-based modeling and rendering. IEEE Trans Patt Anal Mach Intell, 2002, 24(8): 1140–1146

    Article  Google Scholar 

  26. Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. New York: Cambridge University Press, 2003

    Google Scholar 

  27. Zhao Q P. A survey on virtual reality. Sci China Ser F-Inf Sci, 2009, 52(3): 348–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Qi.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60533070, 60773153), the Key Grant Project of Chinese Ministry of Education (Grant No. 308004), the Project of Chinese Ministry of Science and Technology (Grant No. 2006BAK12B09), and the Project of Beijing Municipal Science and Technology Commission (Grant No. Z07000100560714)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Yang, S., Cai, S. et al. A method of 3D modeling and codec. Sci. China Ser. F-Inf. Sci. 52, 758–769 (2009). https://doi.org/10.1007/s11432-009-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0090-0

Keywords