Skip to main content

Advertisement

Log in

On semi-global stabilization of minimum phase nonlinear systems without vector relative degrees

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Recently, we developed a structural decomposition for multiple input multiple output nonlinear systems that are affine in control but otherwise general. This structural decomposition simplifies the conventional backstepping design and allows a new backstepping design procedure that is able to stabilize some systems on which the conventional backstepping is not applicable. In this paper we further exploit the properties of such a decomposition for the purpose of solving the semi-global stabilization problem for minimum phase nonlinear systems without vector relative degrees. By taking advantage of special structure of the decomposed system, we first apply the low gain design to the part of system that possesses a linear dynamics. The low gain design results in an augmented zero dynamics that is locally stable at the origin with a domain of attraction that can be made arbitrarily large by lowering the gain. With this augmented zero dynamics, backstepping design is then applied to achieve semi-global stabilization of the overall system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirschorn R M. Invertibility of multivariable nonlinear control systems. IEEE Trans Automat Contr, 1979, 24: 855–865

    Article  MATH  MathSciNet  Google Scholar 

  2. Krener A J, Isidori A. Nonlinear zero distributions. In: Proc 19th IEEE Conf Decision Contr, Albuquerque, NM, 1980. 665–668

  3. Singh S N. A modified algorithm for invertibility in nonlinear systems. IEEE Trans Automat Contr, 1981, 26: 595–598

    Article  MATH  Google Scholar 

  4. Isidori A, Krener A J, Gori-Giorgi C, et al. Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans Automat Contr, 1981, 26: 331–345

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrnes C I, Isidori A. A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control. In: Proc 23rd IEEE Conf Decision Contr, Las Vega, NV, 1984. 1569–1573

  6. Sastry S S, Isidori A. Adaptive control of linearizable systems. IEEE Trans Automat Contr, 1989, 34: 1123–1131

    Article  MATH  MathSciNet  Google Scholar 

  7. Nijmeijer H, van der Schaft A J. Nonlinear Dynamical Control Systems. Berlin: Springer, 1990

    MATH  Google Scholar 

  8. Krstić M, Kanellakopoulos I, Kokotović P V. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995

    Google Scholar 

  9. Isidori A. Nonlinear Control Systems. 3rd ed. Berlin: Springer, 1995

    MATH  Google Scholar 

  10. Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust. London: Prentice-Hall, 1996

    Google Scholar 

  11. Conte G, Moog C H, Perdon A M. Nonlinear Control Systems: an Algebraic Setting. Berlin: Springer, 1999

    MATH  Google Scholar 

  12. Isidori A. Nonlinear Control Systems II. Berlin: Springer, 1999

    MATH  Google Scholar 

  13. Schwartz B, Isidori A, Tarn T J. Global normal forms for mimo nonlinear systems, with application stabilization and disturbance attenuation. Math Contr Signal Syst, 1999, 12: 121–142

    Article  MATH  MathSciNet  Google Scholar 

  14. Byrnes C I, Isidori A. Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans Automat Contr, 1991, 36: 1122–1137

    Article  MATH  MathSciNet  Google Scholar 

  15. Sussmann H J, Kokotović P. The peaking phenomenon and the global stabilization of nonlinearsystems. IEEE Trans Automat Contr, 1991, 36(4): 424–440

    Article  MATH  Google Scholar 

  16. Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems. Int J Contr, 1992, 56(5): 1007–1037

    Article  MATH  MathSciNet  Google Scholar 

  17. Teel A. Semi-global stabilization of minimum phase nonlinear systems in special normal forms. Syst Contr Lett, 1992, 19(3): 187–192

    Article  MATH  MathSciNet  Google Scholar 

  18. Lin Z, Saberi A. Semi-global stabilization of minimum phase nonlinear systems in special normal form via linear high-and-low-gain state feedback. Int J Robust Nonlin, 1994, 4: 353–362

    Article  MATH  MathSciNet  Google Scholar 

  19. Lin Z, Saberi A. Robust semiglobal stabilization of minimum-phase input-output linearizable systems via partial state and output feedback. IEEE Trans Automat Contr, 1995, 40(6): 1029–1041

    Article  MATH  MathSciNet  Google Scholar 

  20. Khalil H K. Nonlinear Systems. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2002

    MATH  Google Scholar 

  21. Byrnes C I, Isidori A. Nonlinear internal models for output regulation. IEEE Trans Automat Contr, 2004, 49(12): 2244–2247

    Article  MathSciNet  Google Scholar 

  22. Karagiannis D, Jiang Z P, Ortega R, et al. Output-feedback stabilization of a class of uncertain non-minimum-phase nonlinear systems. Automatica, 2005, 41(9): 1609–1615

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaliora G, Astolfi A, Praly L. Norm estimators and global output feedback stabilization of nonlinear systems With ISS inverse dynamics. IEEE Trans Automat Contr, 2006, 51(3): 493–498

    Article  MathSciNet  Google Scholar 

  24. Liu X, Lin Z. On normal forms of nonlinear systems affine in control. In: Proc 2007 Amer Contr Conf. New York, 2007. 2352–2357

  25. Liu X, Lin Z. On stabilization of nonlinear systems affine in control. In: Proc 2008 Amer Contr Conf, Seattle, WA, 2008. 4123–4128

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZongLi Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Lin, Z. On semi-global stabilization of minimum phase nonlinear systems without vector relative degrees. Sci. China Ser. F-Inf. Sci. 52, 2153–2162 (2009). https://doi.org/10.1007/s11432-009-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0184-8

Keywords